Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Overview

Knowledge Informed Machine Learning using a Weibull-based Loss Function

Exploring the concept of knowledge-informed machine learning with the use of a Weibull-based loss function. Used to predict remaining useful life (RUL) on the IMS and PRONOSTIA (also called FEMTO) bearing data sets.

Open In Colab Source code arXiv

Knowledge-informed machine learning is used on the IMS and PRONOSTIA bearing data sets for remaining useful life (RUL) prediction. The knowledge is integrated into a neural network through a novel Weibull-based loss function. A thorough statistical analysis of the Weibull-based loss function is conducted, demonstrating the effectiveness of the method on the PRONOSTIA data set. However, the Weibull-based loss function is less effective on the IMS data set.

The experiment will be detailed in the Journal of Prognostics and Health Management (accepted and pending publication -- preprint here), with an extensive discussion on the results, shortcomings, and benefits analysis. The paper also gives an overview of knowledge informed machine learning as it applies to prognostics and health management (PHM).

You can replicate the work, and all figures, by following the instructions in the Setup section. Even easier: run the Colab notebook!

If you have any questions, leave a comment in the discussion, or email me ([email protected]).

Summary

In this work, we use the definition of knowledge informed machine learning from von Rueden et al. (their excellent paper is here). Here's the general taxonomy of our knowledge informed machine learning experiment:

source_rep_int

Bearing vibration data (from the frequency domain) was used as input to feed-forward neural networks. The below figure demonstrates the data as a spectrogram (a) and the spectrogram after "binning" (b). The binned data was used as input.

spectrogram

A large hyper-parameter search was conducted on neural networks. Nine different Weibull-based loss functions were tested on each unique network.

The below chart is a qualitative method of showing the effectiveness of the Weibull-based loss functions on the two data sets.

loss function percentage

We also conducted a statistical analysis of the results, as shown below.

correlation of the weibull-based loss function to results

The top performing models' RUL trends are shown below, for both the IMS and PRONOSTIA data sets.

IMS RUL  trend
PRONOSTIA RUL  trend

Setup

Tested in linux (MacOS should also work). If you run windows you'll have to do much of the environment setup and data download/preprocessing manually.

To reproduce results:

  1. Clone this repo - clone https://github.com/tvhahn/weibull-knowledge-informed-ml.git

  2. Create virtual environment. Assumes that Conda is installed.

    • Linux/MacOS: use command from the Makefile in the root directory - make create_environment
    • Windows: from root directory - conda env create -f envweibull.yml
    • HPC: make create_environment will detect HPC environment and automatically create environment from make_hpc_venv.sh. Tested on Compute Canada. Modify make_hpc_venv.sh for your own HPC cluster.
  3. Download raw data.

    • Linux/MacOS: use make download. Will automatically download to appropriate data/raw directory.
    • Windows: Manually download the the IMS and PRONOSTIA (FEMTO) data sets from NASA prognostics data repository. Put in data/raw folder.
    • HPC: use make download. Will automatically detect HPC environment.
  4. Extract raw data.

    • Linux/MacOS: use make extract. Will automatically extract to appropriate data/raw directory.
    • Windows: Manually extract data. See the Project Organization section for folder structure.
    • HPC: use make download. Will automatically detect HPC environment. Again, modify for your HPC cluster.
  5. Ensure virtual environment is activated. conda activate weibull or source ~/weibull/bin/activate

  6. From root directory of weibull-knowledge-informed-ml, run pip install -e . -- this will give the python scripts access to the src folders.

  7. Train!

    • Linux/MacOS: use make train_ims or make train_femto. Note: set constants in the makefile for changing random search parameters. Currently set as default.

    • Windows: run manually by calling the script - python train_ims or python train_femto with the appropriate arguments. For example: src/models/train_models.py --data_set femto --path_data your_data_path --proj_dir your_project_directory_path

    • HPC: use make train_ims or make train_femto. The HPC environment should be automatically detected. A SLURM script will be run for a batch job.

      • Modify the train_modify_ims_hpc.sh or train_model_femto_hpc.sh in the src/models directory to meet the needs of your HPC cluster. This should work on Compute Canada out of the box.
  8. Filter out the poorly performing models and collate the results. This will create several results files in the models/final folder.

    • Linux/MacOS: use make summarize_ims_models or make summarize_femto_models. (note: set filter boundaries in summarize_model_results.py. Will eventually modify for use with Argparse...)
    • Windows: run manually by calling the script.
    • HPC: use make summarize_ims_models or make summarize_femto_models. Again, change filter requirements in the summarize_model_results.py script.
  9. Make the figures of the data and results.

    • Linux/MacOS: use make figures_data and make figures_results. Figures will be generated and placed in the reports/figures folder.
    • Windows: run manually by calling the script.
    • HPC: use make figures_data and make figures_results

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands to reproduce work, lik `make data` or `make train_ims`
├── README.md          <- The top-level README.
├── data
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump. Downloaded from the NASA Prognostic repository.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details (nothing in here yet)
│
├── models             <- Trained models, model predictions, and model summaries
│   ├── interim        <- Intermediate models that have not analyzed. Output from the random search.
│   ├── final          <- Final models that have been filtered and summarized. Several outpu csv files as well.
│
├── notebooks          <- Jupyter notebooks used for data exploration and analysis. Of varying quality.
│   ├── scratch        <- Scratch notebooks for quick experimentation.     
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials (empty).
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── envweibull.yml    <- The Conda environment file for reproducing the analysis environment
│                        recommend using Conda).
│
├── make_hpc_venv.sh  <- Bash script to create the HPC venv. Setup for my Compute Canada cluster.
│                        Modify to suit your own HPC cluster.
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models               
│   │   └── predict_model.py
│   │
│   └── visualization  <- Scripts to create figures of the data, results, and training progress
│       ├── visualize_data.py       
│       ├── visualize_results.py     
│       └── visualize_training.py    

Future List

As noted in the paper, the best thing would be to test out Weibull-based loss functions on large, and real-world, industrial datasets. Suitable applications may include large fleets of pumps or gas turbines.

Owner
Tim
Data science. Innovation. ML practitioner.
Tim
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022