This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

Related tags

Deep Learningtts-gan
Overview

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network


This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"


Abstract: Time-series datasets used in machine learning applications often are small in size, making the training of deep neural network architectures ineffective. For time series, the suite of data augmentation tricks we can use to expand the size of the dataset is limited by the need to maintain the basic properties of the signal. Data generated by a Generative Adversarial Network (GAN) can be utilized as another data augmentation tool. RNN-based GANs suffer from the fact that they cannot effectively model long sequences of data points with irregular temporal relations. To tackle these problems, we introduce TTS-GAN, a transformer-based GAN which can successfully generate realistic synthetic time series data sequences of arbitrary length, similar to the original ones. Both the generator and discriminator networks of the GAN model are built using a pure transformer encoder architecture. We use visualizations to demonstrate the similarity of real and generated time series and a simple classification task that shows how we can use synthetically generated data to augment real data and improve classification accuracy.


Key Idea:

Transformer GAN generate synthetic time-series data

The TTS-GAN Architecture

The TTS-GAN Architecture

The TTS-GAN model architecture is shown in the upper figure. It contains two main parts, a generator, and a discriminator. Both of them are built based on the transformer encoder architecture. An encoder is a composition of two compound blocks. A multi-head self-attention module constructs the first block and the second block is a feed-forward MLP with GELU activation function. The normalization layer is applied before both of the two blocks and the dropout layer is added after each block. Both blocks employ residual connections.

The time series data processing step

The time series data processing step

We view a time-series data sequence like an image with a height equal to 1. The number of time-steps is the width of an image, W. A time-series sequence can have a single channel or multiple channels, and those can be viewed as the number of channels (RGB) of an image, C. So an input sequence can be represented with the matrix of size (Batch Size, C, 1, W). Then we choose a patch size N to divide a sequence into W / N patches. We then add a soft positional encoding value by the end of each patch, the positional value is learned during model training. Each patch will then have the data shape (Batch Size, C, 1, (W/N) + 1) This process is shown in the upper figure.


Repository structures:

./images

Several images of the TTS-GAN project

./pre-trained-models

Saved pre-trained GAN model checkpoints

dataLoader.py

The UniMiB dataset dataLoader used for loading GAN model training/testing data

LoadRealRunningJumping.py

Load real running and jumping data from UniMiB dataset

LoadSyntheticRunningJumping.py

Load Synthetic running and jumping data from the pre-trained GAN models

functions.py

The GAN model training and evaluation functions

train_GAN.py

The major GAN model training file

visualizationMetrics.py

The help functions to draw T-SNE and PCA plots

adamw.py

The adamw function file

cfg.py

The parse function used for reading parameters to train_GAN.py file

JumpingGAN_Train.py

Run this file to start training the Jumping GAN model

RunningGAN_Train.py

Run this file to start training the Running GAN model


Code Instructions:

To train the Running data GAN model:

python RunningGAN_Train.py

To train the Jumping data GAN model:

python JumpingGAN_Train.py

A simple example of visualizing the similarity between the synthetic running&jumping data and the real running&jumping data:

Running&JumpingVisualization.ipynb

Owner
Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University
This is the public GitHub page of the Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab)
Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Angle data is a simple data type.

angledat Angle data is a simple data type. Installing + using Put angledat.py in the main dir of your project. Import it and use. Comments Comments st

1 Jan 05, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022