Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Overview

Patient Knowledge Distillation for BERT Model Compression

Knowledge distillation for BERT model

Installation

Run command below to install the environment

conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
pip install -r requirements.txt

Training

Objective Function

L = (1 - \alpha) L_CE + \alpha * L_DS + \beta * L_PT,

where L_CE is the CrossEntropy loss, DS is the usual Distillation loss, and PT is the proposed loss. Please see our paper below for more details.

Data Preprocess

Modify the HOME_DATA_FOLDER in envs.py and put all data under it (by default it is ./data), RTE data is uploaded for your convenience.

  • The folder name under HOME_DATA_FOLDER should be
    • data_raw: store the raw datas of all tasks. So put downloaded raw data under here
      • MRPC
      • RTE
      • ... (other tasks)
    • data_feat: store the tokenized data under this folder (optional)
      • MRPC
      • RTE
      • ...
  • models
    • pretrained: put downloaded pretrained model (bert-base-uncased) under this folder

Predefinted Training

Run NLI_KD_training.py to start training, you can set DEBUG = True to run some pre-defined arguments

  • set argv = get_predefine_argv('glue', 'RTE', 'finetune_teacher') or argv = get_predefine_argv('glue', 'RTE', 'finetune_student') to start the normal fine-tuning
  • run run_glue_benchmark.py to get teacher's prediction for KD or PKD.
    • set output_all_layers = True for patient teacher
    • set output_all_layers = False for normal teacher
  • set argv = get_predefine_argv('glue', 'RTE', 'kd') to start the vanilla KD
  • set argv = get_predefine_argv('glue', 'RTE', 'kd.cls') to start the vanilla KD

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Citation

If you find this code useful for your research, please consider citing:

@article{sun2019patient,
title={Patient Knowledge Distillation for BERT Model Compression},
author={Sun, Siqi and Cheng, Yu and Gan, Zhe and Liu, Jingjing},
journal={arXiv preprint arXiv:1908.09355},
year={2019}
}

Paper is available at here.

Owner
Siqi
Siqi
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022