ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

Related tags

Deep Learningpytorch
Overview

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning

This repository contains the code for our ICCV 2021 paper:

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning
Sangho Lee*, Jiwan Chung*, Youngjae Yu, Gunhee Kim, Thomas Breuel, Gal Chechik, Yale Song (*: equal contribution)
[paper]

@inproceedings{lee2021acav100m,
    title="{ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning}",
    author={Sangho Lee and Jiwan Chung and Youngjae Yu and Gunhee Kim and Thomas Breuel and Gal Chechik and Yale Song},
    booktitle={ICCV},
    year=2021
}

System Requirements

  • Python >= 3.8.5
  • FFMpeg 4.3.1

Installation

  1. Install PyTorch 1.6.0, torchvision 0.7.0 and torchaudio 0.6.0 for your environment. Follow the instructions in HERE.

  2. Install the other required packages.

pip install -r requirements.txt
python -m nltk.downloader 'punkt'
pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/<cuda version>/torch1.6/index.html
pip install git+https://github.com/jiwanchung/slowfast
pip install torch-scatter==2.0.5 -f https://pytorch-geometric.com/whl/torch-1.6.0+<cuda version>.html

e.g. Replace <cuda version> with cu102 for CUDA 10.2.

Input File Structure

  1. Create the data directory
mkdir data
  1. Prepare the input file.

data/metadata.tsv should be structured as follows. We provide an example input file in examples/metadata.tsv

YOUTUBE_ID\t{"LatestDAFeature": {"Title": TITLE, "Description": DESCRIPTION, "YouTubeCategory": YOUTUBE_CATEGORY, "VideoLength": VIDEO_LENGTH}, "MediaVersionList": [{"Duration": DURATION}]}

Data Curation Pipeline

One-Liner

bash ./run.sh

To enable GPU computation, modify the CUDA_VISIBLE_DEVICES environment variable accordingly. For example, run the above command as export CUDA_VISIBLE_DEVICES=2,3; bash ./run.sh.

Step-by-Step

  1. Filter the videos with metadata.
bash ./metadata_filtering/code/run.sh

The above command will build the data/filtered.tsv file.

  1. Download the actual video files from youtube.
bash ./video_download/code/run.sh

Although we provide a simple download script, we recommend more scalable solutions for downloading large-scale data.

The above command will download the files to data/videos/raw directory.

  1. Segment the videos into 10-second clips.
bash ./clip_segmentation/code/run.sh

The above command will save the segmented clips to data/videos directory.

  1. Extract features from the clips.
bash ./feature_extraction/code/run.sh

The above command will save the extracted features to data/features directory.

This step requires GPU for faster computation.

  1. Perform clustering with the extracted features.
bash ./clustering/code/run.sh

The above command will save the extracted features to data/clusters directory.

This step requires GPU for faster computation.

  1. Select subset with high audio-visual correspondence using the clustering results.
bash ./subset_selection/code/run.sh

The above command will save the selected clip indices to data/datasets directory.

This step requires GPU for faster computation.

The final output should be saved in the data/output.csv file.

Output File Structure

output.csv is structured as follows. We provide an example output file at examples/output.csv.

# SHARD_NAME,FILENAME,YOUTUBE_ID,SEGMENT
shard-000009,qpxektwhzra_292.mp4,qpxektwhzra,"[292.3329999997, 302.3329999997]"

Evaluation

Instructions on downstream evaluation are provided in Evaluation.

Correspondence Retrieval

Instructions on correspondence retrieval experiments are provided in Correspondence Retrieval.

Owner
sangho.lee
sangho.lee
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
MADT: Offline Pre-trained Multi-Agent Decision Transformer

MADT: Offline Pre-trained Multi-Agent Decision Transformer A link to our paper can be found on Arxiv. Overview Official codebase for Offline Pre-train

Linghui Meng 51 Dec 21, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022