Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Overview

Invariant Causal Imitation Learning for Generalizable Policies

Ioana Bica, Daniel Jarrett, Mihaela van der Schaar

Neural Information Processing Systems (NeurIPS) 2021

Dependencies

The code was implemented in Python 3.6 and the following packages are needed for running it:

  • gym==0.17.2

  • numpy==1.18.2

  • pandas==1.0.4

  • tensorflow==1.15.0

  • torch==1.6.0

  • tqdm==4.32.1

  • scipy==1.1.0

  • scikit-learn==0.22.2

  • stable-baselines==2.10.1

Running and evaluating the model:

The control tasks used for experiments are from OpenAI gym [1]. Each control task is associated with a true reward function (unknown to the imitation algorithm). In each case, the “expert” demonstrator can be obtained by using a pre-trained and hyperparameter-optimized agent from the RL Baselines Zoo [2] in Stable OpenAI Baselines [3].

In this implementation we provide the expert demonstrations for 2 environments for CartPole-v1 in 'volume/CartPole-v1'. Note that the code in 'contrib/baselines_zoo' was taken from [2].

To train and evaluate ICIL on CartPole-v1, run the following command with the chosen command line arguments. For reference, the expert performance is 500.

python testing/il.py
Options :
   --env                  # Environment name. 
   --num_trajectories	  # Number of expert trajectories used for training the imitation learning algorithm. 
   --trial                # Trial number.

Outputs:

  • Average reward for 10 repetitions of running ICIL.

Example usage

python testing/il.py  --env='CartPole-v1' --num_trajectories=20 --trial=0 

References

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. OpenAI, 2016

[2] Antonin Raffin. Rl baselines zoo. https://github.com/araffin/rl-baselines-zoo, 2018

[3] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-a/stable-baselines, 2018.

Citation

If you use this code, please cite:

@inproceedings{bica2021invariant,
  title={Invariant Causal Imitation Learning for Generalizable Policies},
  author={Bica, Ioana and Jarrett, Daniel and van der Schaar, Mihaela},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
Owner
Ioana Bica
Ioana Bica
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022