Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Overview



The templated deep learning framework, enabling framework-agnostic functions, layers and libraries.

Contents

Overview

What is Ivy?

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries and layers can then be written using Ivy, with simultaneous support for all frameworks. Ivy currently supports Jax, TensorFlow, PyTorch, MXNet and Numpy. Check out the docs for more info!

Ivy Libraries

There are a host of derived libraries written in Ivy, in the areas of mechanics, 3D vision, robotics, differentiable memory, and differentiable gym environments. Click on the icons below for their respective github pages.


Quick Start

Ivy can be installed like so: pip install ivy-core

To get started, you can immediately use ivy with your deep learning framework of choice. In the example below we show how ivy's concatenation function is compatible with tensors from different frameworks.

import jax.numpy as jnp
import tensorflow as tf
import numpy as np
import mxnet as mx
import torch

import ivy

jax_concatted = ivy.concatenate((jnp.ones((1,)), jnp.ones((1,))), -1)
tf_concatted = ivy.concatenate((tf.ones((1,)), tf.ones((1,))), -1)
np_concatted = ivy.concatenate((np.ones((1,)), np.ones((1,))), -1)
mx_concatted = ivy.concatenate((mx.nd.ones((1,)), mx.nd.ones((1,))), -1)
torch_concatted = ivy.concatenate((torch.ones((1,)), torch.ones((1,))), -1)

To see a list of all Ivy methods, type ivy. into a python command prompt and press tab. You should then see output like the following:

docs/partial_source/images/ivy_tab.png

Based on this short code sample alone, you may wonder, why is this helpful? Don't most developers stick to just one framework for a project? This is indeed the case, and the benefit of Ivy is not the ability to combine different frameworks in a single project.

So what is the benefit of Ivy?

In a Nutshell

Ivy's strength arises when we want to maximize the usability of our code.

We can write a set of functions once in Ivy, and share these with the community so that all developers can use them, irrespective of their personal choice of framework. TensorFlow? PyTorch? Jax? With Ivy functions it doesn't matter!

This makes it very simple to create highly portable deep learning codebases. The core idea behind Ivy is captured by the example of the ivy.clip function below.

On it's own this may not seem very exciting, there are more interesting things to do in deep learning than clip tensors. Ivy is a building block for more interesting applications.

For example, the Ivy libraries for mechanics, 3D vision, robotics, and differentiable environments are all written in pure Ivy. These libraries provide fully differentiable implementations of various applied functions, primed for integration in end-to-end networks, for users of any deep-learning framework.

Another benefit of Ivy is user flexibility. By keeping the Ivy abstraction lightweight and fully functional, this keeps you in full control of your code. The schematic below emphasizes that you can choose to develop at any abstraction level.

You can code entirely in Ivy, or mainly in their native DL framework, with a small amount of Ivy code. This is entirely up to you, depending on how many Ivy functions you need from existing Ivy libraries, and how much new Ivy code you add into your own project, to maximize it's audience when sharing online.

Where Next?

So, now that you've got the gist of Ivy, and why it's useful. Where to next?

This depends on whether you see yourself in the short term as more likely to be an Ivy library user or an Ivy library contributor.

If you would like to use the existing set of Ivy libraries, dragging and dropping key functions into your own project, then we suggest you dive into some of the demos for the various Ivy libraries currently on offer. Simply open up the main docs, then open the library-specific docs linked on the bottom left, and check out the demos folder in the library repo.

On the other hand, if you have your own new library in mind, or if you would like to implement parts of your own project in Ivy to maximise it's portability, then we recommend checking out the page Writing Ivy in the docs. Here, we dive a bit deeper into the Ivy framework, and the best coding practices to get the most out of Ivy for your own codebases and libraries.

Citation

@article{lenton2021ivy,
  title={Ivy: Templated Deep Learning for Inter-Framework Portability},
  author={Lenton, Daniel and Pardo, Fabio and Falck, Fabian and James, Stephen and Clark, Ronald},
  journal={arXiv preprint arXiv:2102.02886},
  year={2021}
}
Comments
  • Create numpy diagonal

    Create numpy diagonal

    diagonal #6616. Kindly mark a green circle on it. So there will be no conflict in the future. I already experienced that thing. https://github.com/unifyai/ivy/issues/6616.

    TensorFlow Frontend NumPy Frontend Array API Ivy Functional API 
    opened by hrak99 59
  • Add Statistical functions mean numpy frontend #2546

    Add Statistical functions mean numpy frontend #2546

    Greetings i think i did everything i did the frontend the tests as well and changed the init files i did the mean function according to the numpy documentation waiting for your reply. Best regards.

    opened by Emperor-WS 26
  • Isin extension

    Isin extension

    #5716

    added most backend implementations there is only problem with tensorflow I'm still trying to solve since it doesnt have the function isin, once I'm able to do that I will add tests

    Array API Function Reformatting Ivy Functional API Ivy API Experimental 
    opened by pillarxyz 20
  • reformat shape_to_tuple

    reformat shape_to_tuple

    Hi, I've got a question on testings. I was getting errors, so I checked the logs and I found out that some of those tests aren't ready yet (e.g.: shape_to_tuple). Not sure if I'm right, but it'll be awesome if you give some information about this. Thank you.

    opened by mcandemir 19
  • feat: add is_tensor to tensorflow frontend general functions

    feat: add is_tensor to tensorflow frontend general functions

    Close #7584 Need help with PyTest, I am unable to wrap my head around the testing helpers yet.

    Essentially, when I run these tests, I get the same error, despite trying various combinations of the parameters passed to the test_frontend_function

    TensorFlow Frontend 
    opened by chtnnh 18
  • argmax function: general.py

    argmax function: general.py

    Test Cases:

    • 42 passed for pytest ./ivy/ivy_tests/test_functional/test_core/test_general.py::test_argmax --disable-warnings -rs
    • 6 skipped for conftest.py
    • No errors

    Implemented for

    • [x] jax
    • [x] numpy
    • [x] mxnet
    • [x] tensorflow
    • [x] torch
    Array API Single Function 
    opened by 7wikd 18
  • Added PadV2 to raw_ops

    Added PadV2 to raw_ops

    Closes https://github.com/unifyai/ivy/issues/9394 Please that this PR is based on https://github.com/unifyai/ivy/pull/9461 as they have common functionality

    TensorFlow Frontend 
    opened by KareemMAX 0
Releases(v1.1.9)
  • v1.1.5(Jul 26, 2021)

    Version 1.1.5.

    Added some new methods and classes, improved the ivy.Module and ivy.Container classes. ivy.Container now overrides more built-in methods, and has more flexible nested methods such as gather_nd, repeat, stop_gradients etc.

    This version was tested against: JAX 0.2.17 JAXLib 0.1.69 TensorFlow 2.5.0 TensorFlow Addons 0.13.0 TensorFlow Probability 0.13.0 PyTorch 1.9.0 MXNet 1.8.0 NumPy 1.19.5

    However, Ivy 1.1.5 inevitably supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.4(Apr 12, 2021)

    Version 1.1.4.

    Added some new methods, fixed some small bugs, improved unit testing, and tested against the latest backend versions.

    This version was tested against: JAX 0.2.12 TensorFlow 2.4.1 PyTorch 1.8.1 MXNet 1.8.0 NumPy 1.20.2

    However, Ivy 1.1.4 inevitably supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.3(Mar 19, 2021)

    Version 1.1.3.

    Added some new methods, fixed some small bugs, improved unit testing, and tested against the latest backend versions.

    This version was tested against: JAX 0.2.10 TensorFlow 2.4.1 PyTorch 1.8.0 MXNet 1.7.0 NumPy 1.19.5

    However, Ivy 1.1.3 likely supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.2(Feb 27, 2021)

    Version 1.1.2.

    Added adam update, changed gradient methdos to operate on gradient dicts instead of lists, added new container chain chain method, among other small changes.

    This version was tested against: JAX 0.2.9 TensorFlow 2.4.1 PyTorch 1.7.1 MXNet 1.7.0 NumPy 1.19.5

    However, Ivy 1.1.2 likely supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.1(Feb 10, 2021)

Owner
Ivy
The Templated Deep Learning Framework
Ivy
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022