Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

Overview

KR-BERT-SimCSE

Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

Training

Unsupervised

python train_unsupervised.py --mixed_precision

I used Korean Wikipedia Corpus that is divided into sentences in advance. (Check out tfds-korean catalog page for details)

  • Settings
    • KR-BERT character
    • peak learning rate 3e-5
    • batch size 64
    • Total steps: 25,000
    • 0.05 warmup rate, and linear decay learning rate scheduler
    • temperature 0.05
    • evalaute on KLUE STS and KorSTS every 250 steps
    • max sequence length 64
    • Use pooled outputs for training, and [CLS] token's representations for inference

The hyperparameters were not tuned and mostly followed the values in the paper.

Supervised

python train_supervised.py --mixed_precision

I used KorNLI for supervised training. (Check out tfds-korean catalog page)

  • Settings
    • KR-BERT character
    • batch size 128
    • epoch 3
    • peak learning rate 5e-5
    • 0.05 warmup rate, and linear decay learning rate scheduler
    • temperature 0.05
    • evalaute on KLUE STS and KorSTS every 125 steps
    • max sequence length 48
    • Use pooled outputs for training, and [CLS] token's representations for inference

The hyperparameters were not tuned and mostly followed the values in the paper.

Results

KorSTS (dev set results)

model 100 X Spearman correlation
KR-BERT base
SimCSE
unsupervised bi encoding 79.99
KR-BERT base
SimCSE-supervised
trained on KorNLI bi encoding 84.88
SRoBERTa base* unsupervised bi encoding 63.34
SRoBERTa base* trained on KorNLI bi encoding 76.48
SRoBERTa base* trained on KorSTS bi encoding 83.68
SRoBERTa base* trained on KorNLI -> KorSTS bi encoding 83.54
SRoBERTa large* trained on KorNLI bi encoding 77.95
SRoBERTa large* trained on KorSTS bi encoding 84.74
SRoBERTa large* trained on KorNLI -> KorSTS bi encoding 84.21

KorSTS (test set results)

model 100 X Spearman correlation
KR-BERT base
SimCSE
unsupervised bi encoding 73.25
KR-BERT base
SimCSE-supervised
trained on KorNLI bi encoding 80.72
SRoBERTa base* unsupervised bi encoding 48.96
SRoBERTa base* trained on KorNLI bi encoding 74.19
SRoBERTa base* trained on KorSTS bi encoding 78.94
SRoBERTa base* trained on KorNLI -> KorSTS bi encoding 80.29
SRoBERTa large* trained on KorNLI bi encoding 75.46
SRoBERTa large* trained on KorSTS bi encoding 79.55
SRoBERTa large* trained on KorNLI -> KorSTS bi encoding 80.49
SRoBERTa base* trained on KorSTS cross encoding 83.00
SRoBERTa large* trained on KorSTS cross encoding 85.27

KLUE STS (dev set results)

model 100 X Pearson's correlation
KR-BERT base
SimCSE
unsupervised bi encoding 74.45
KR-BERT base
SimCSE-supervised
trained on KorNLI bi encoding 79.42
KR-BERT base* supervised cross encoding 87.50

References

@misc{gao2021simcse,
    title={SimCSE: Simple Contrastive Learning of Sentence Embeddings},
    author={Tianyu Gao and Xingcheng Yao and Danqi Chen},
    year={2021},
    eprint={2104.08821},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
@misc{ham2020kornli,
    title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
    author={Jiyeon Ham and Yo Joong Choe and Kyubyong Park and Ilji Choi and Hyungjoon Soh},
    year={2020},
    eprint={2004.03289},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
@misc{park2021klue,
    title={KLUE: Korean Language Understanding Evaluation},
    author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jung-Woo Ha and Kyunghyun Cho},
    year={2021},
    eprint={2105.09680},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Jeong Ukjae
Jeong Ukjae
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
⚖️ A Statutory Article Retrieval Dataset in French.

A Statutory Article Retrieval Dataset in French This repository contains the Belgian Statutory Article Retrieval Dataset (BSARD), as well as the code

Maastricht Law & Tech Lab 19 Nov 17, 2022
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
Deep Learning Topics with Computer Vision & NLP

Deep learning Udacity Course Deep Learning Topics with Computer Vision & NLP for the AWS Machine Learning Engineer Nanodegree Program Tasks are mostly

Simona Mircheva 1 Jan 20, 2022
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
customer care chatbot made with Rasa Open Source.

Customer Care Bot Customer care bot for ecomm company which can solve faq and chitchat with users, can contact directly to team. 🛠 Features Basic E-c

Dishant Gandhi 23 Oct 27, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

NumPy String-Indexed NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventio

Aitan Grossman 1 Jan 08, 2022
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022