Japanese NLP Library

Overview

Japanese NLP Library


Back to Home

1   Requirements

1.1   Links

  • All code at jProcessing Repo GitHub
  • PyPi Python Package
clone [email protected]:kevincobain2000/jProcessing.git

1.2   Install

In Terminal

bash$ python setup.py install

1.3   History

  • 0.2

    • Sentiment Analysis of Japanese Text
  • 0.1
    • Morphologically Tokenize Japanese Sentence
    • Kanji / Hiragana / Katakana to Romaji Converter
    • Edict Dictionary Search - borrowed
    • Edict Examples Search - incomplete
    • Sentence Similarity between two JP Sentences
    • Run Cabocha(ISO--8859-1 configured) in Python.
    • Longest Common String between Sentences
    • Kanji to Katakana Pronunciation
    • Hiragana, Katakana Chart Parser

2   Libraries and Modules

2.1   Tokenize jTokenize.py

In Python

>>> from jNlp.jTokenize import jTokenize
>>> input_sentence = u'私は彼を5日前、つまりこの前の金曜日に駅で見かけた'
>>> list_of_tokens = jTokenize(input_sentence)
>>> print list_of_tokens
>>> print '--'.join(list_of_tokens).encode('utf-8')

Returns:

... [u'\u79c1', u'\u306f', u'\u5f7c', u'\u3092', u'\uff15'...]
... 私--は--彼--を--5--日--前--、--つまり--この--前--の--金曜日--に--駅--で--見かけ--た

Katakana Pronunciation:

>>> print '--'.join(jReads(input_sentence)).encode('utf-8')
... ワタシ--ハ--カレ--ヲ--ゴ--ニチ--マエ--、--ツマリ--コノ--マエ--ノ--キンヨウビ--ニ--エキ--デ--ミカケ--タ

2.2   Cabocha jCabocha.py

Run Cabocha with original EUCJP or IS0-8859-1 configured encoding, with utf8 python

>>> from jNlp.jCabocha import cabocha
>>> print cabocha(input_sentence).encode('utf-8')

Output:

">
<sentence>
 <chunk id="0" link="8" rel="D" score="0.971639" head="0" func="1">
  <tok id="0" read="ワタシ" base="" pos="名詞-代名詞-一般" ctype="" cform="" ne="O">私tok>
  <tok id="1" read="" base="" pos="助詞-係助詞" ctype="" cform="" ne="O">はtok>
 chunk>
 <chunk id="1" link="2" rel="D" score="0.488672" head="2" func="3">
  <tok id="2" read="カレ" base="" pos="名詞-代名詞-一般" ctype="" cform="" ne="O">彼tok>
  <tok id="3" read="" base="" pos="助詞-格助詞-一般" ctype="" cform="" ne="O">をtok>
 chunk>
 <chunk id="2" link="8" rel="D" score="2.25834" head="6" func="6">
  <tok id="4" read="" base="" pos="名詞-数" ctype="" cform="" ne="B-DATE">5tok>
  <tok id="5" read="ニチ" base="" pos="名詞-接尾-助数詞" ctype="" cform="" ne="I-DATE">日tok>
  <tok id="6" read="マエ" base="" pos="名詞-副詞可能" ctype="" cform="" ne="I-DATE">前tok>
  <tok id="7" read="" base="" pos="記号-読点" ctype="" cform="" ne="O">、tok>
 chunk>

2.3   Kanji / Katakana /Hiragana to Tokenized Romaji jConvert.py

Uses data/katakanaChart.txt and parses the chart. See katakanaChart.

>>> from jNlp.jConvert import *
>>> input_sentence = u'気象庁が21日午前4時48分、発表した天気概況によると、'
>>> print ' '.join(tokenizedRomaji(input_sentence))
>>> print tokenizedRomaji(input_sentence)
...kisyoutyou ga ni ichi nichi gozen yon ji yon hachi hun  hapyou si ta tenki gaikyou ni yoru to
...[u'kisyoutyou', u'ga', u'ni', u'ichi', u'nichi', u'gozen',...]

katakanaChart.txt

2.4   Longest Common String Japanese jProcessing.py

On English Strings

>>> from jNlp.jProcessing import long_substr
>>> a = 'Once upon a time in Italy'
>>> b = 'Thre was a time in America'
>>> print long_substr(a, b)

Output

...a time in

On Japanese Strings

>>> a = u'これでアナタも冷え知らず'
>>> b = u'これでア冷え知らずナタも'
>>> print long_substr(a, b).encode('utf-8')

Output

...冷え知らず

2.5   Similarity between two sentences jProcessing.py

Uses MinHash by checking the overlap http://en.wikipedia.org/wiki/MinHash

English Strings:
>>> from jNlp.jProcessing import Similarities
>>> s = Similarities()
>>> a = 'There was'
>>> b = 'There is'
>>> print s.minhash(a,b)
...0.444444444444
Japanese Strings:
>>> from jNlp.jProcessing import *
>>> a = u'これは何ですか?'
>>> b = u'これはわからないです'
>>> print s.minhash(' '.join(jTokenize(a)), ' '.join(jTokenize(b)))
...0.210526315789

3   Edict Japanese Dictionary Search with Example sentences

3.1   Sample Ouput Demo

3.2   Edict dictionary and example sentences parser.

This package uses the EDICT and KANJIDIC dictionary files. These files are the property of the Electronic Dictionary Research and Development Group , and are used in conformance with the Group's licence .

Edict Parser By Paul Goins, see edict_search.py Edict Example sentences Parse by query, Pulkit Kathuria, see edict_examples.py Edict examples pickle files are provided but latest example files can be downloaded from the links provided.

3.3   Charset

Two files

  • utf8 Charset example file if not using src/jNlp/data/edict_examples

    To convert EUCJP/ISO-8859-1 to utf8

    iconv -f EUCJP -t UTF-8 path/to/edict_examples > path/to/save_with_utf-8
    
  • ISO-8859-1 edict_dictionary file

Outputs example sentences for a query in Japanese only for ambiguous words.

3.4   Links

Latest Dictionary files can be downloaded here

3.5   edict_search.py

author: Paul Goins License included linkToOriginal:

For all entries of sense definitions

>>> from jNlp.edict_search import *
>>> query = u'認める'
>>> edict_path = 'src/jNlp/data/edict-yy-mm-dd'
>>> kp = Parser(edict_path)
>>> for i, entry in enumerate(kp.search(query)):
...     print entry.to_string().encode('utf-8')

3.6   edict_examples.py

Note: Only outputs the examples sentences for ambiguous words (if word has one or more senses)
author: Pulkit Kathuria
>>> from jNlp.edict_examples import *
>>> query = u'認める'
>>> edict_path = 'src/jNlp/data/edict-yy-mm-dd'
>>> edict_examples_path = 'src/jNlp/data/edict_examples'
>>> search_with_example(edict_path, edict_examples_path, query)

Output

認める

Sense (1) to recognize;
  EX:01 我々は彼の才能を*認*めている。We appreciate his talent.

Sense (2) to observe;
  EX:01 x線写真で異状が*認*められます。We have detected an abnormality on your x-ray.

Sense (3) to admit;
  EX:01 母は私の計画をよいと*認*めた。Mother approved my plan.
  EX:02 母は決して私の結婚を*認*めないだろう。Mother will never approve of my marriage.
  EX:03 父は決して私の結婚を*認*めないだろう。Father will never approve of my marriage.
  EX:04 彼は女性の喫煙をいいものだと*認*めない。He doesn't approve of women smoking.
  ...

4   Sentiment Analysis Japanese Text

This section covers (1) Sentiment Analysis on Japanese text using Word Sense Disambiguation, Wordnet-jp (Japanese Word Net file name wnjpn-all.tab), SentiWordnet (English SentiWordNet file name SentiWordNet_3.*.txt).

4.1   Wordnet files download links

  1. http://nlpwww.nict.go.jp/wn-ja/eng/downloads.html
  2. http://sentiwordnet.isti.cnr.it/

4.2   How to Use

The following classifier is baseline, which works as simple mapping of Eng to Japanese using Wordnet and classify on polarity score using SentiWordnet.

  • (Adnouns, nouns, verbs, .. all included)
  • No WSD module on Japanese Sentence
  • Uses word as its common sense for polarity score
>>> from jNlp.jSentiments import *
>>> jp_wn = '../../../../data/wnjpn-all.tab'
>>> en_swn = '../../../../data/SentiWordNet_3.0.0_20100908.txt'
>>> classifier = Sentiment()
>>> classifier.train(en_swn, jp_wn)
>>> text = u'監督、俳優、ストーリー、演出、全部最高!'
>>> print classifier.baseline(text)
...Pos Score = 0.625 Neg Score = 0.125
...Text is Positive

4.3   Japanese Word Polarity Score

>>> from jNlp.jSentiments import *
>>> jp_wn = '_dicts/wnjpn-all.tab' #path to Japanese Word Net
>>> en_swn = '_dicts/SentiWordNet_3.0.0_20100908.txt' #Path to SentiWordNet
>>> classifier = Sentiment()
>>> sentiwordnet, jpwordnet  = classifier.train(en_swn, jp_wn)
>>> positive_score = sentiwordnet[jpwordnet[u'全部']][0]
>>> negative_score = sentiwordnet[jpwordnet[u'全部']][1]
>>> print 'pos score = {0}, neg score = {1}'.format(positive_score, negative_score)
...pos score = 0.625, neg score = 0.0

5   Contacts

Author: pulkit[at]jaist.ac.jp [change at with @]
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
Turkish Stop Words Türkçe Dolgu Sözcükleri

trstop Turkish Stop Words Türkçe Dolgu Sözcükleri In this repository I put Turkish stop words that is contained in the first 10 thousand words with th

Ahmet Aksoy 103 Nov 12, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect.

117 Jan 07, 2023
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
تولید اسم های رندوم فینگیلیش

karafs کرفس تولید اسم های رندوم فینگیلیش installation ➜ pip install karafs usage دو زبانه ➜ karafs -n 10 توت فرنگی بی ناموس toot farangi-ye bi_namoos

Vaheed NÆINI (9E) 36 Nov 24, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

Microsoft 105 Jan 08, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

NumPy String-Indexed NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventio

Aitan Grossman 1 Jan 08, 2022
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Zhuosheng Zhang 3 Apr 14, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022