Text-Based Ideal Points

Related tags

Deep Learningtbip
Overview

Text-Based Ideal Points

Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020).

Update (June 29, 2020): We have added interactive visualizations of topics learned by our model.

Update (May 25, 2020): We have added a PyTorch implementation of the text-based ideal point model.

Update (May 11, 2020): See our Colab notebook to run the model online. Our Github code is more complete, and it can be used to reproduce all of our experiments. However, the TBIP is fastest on GPU, so if you do not have access to a GPU you can use Colab's GPUs for free.

Installation for GPU

Configure a virtual environment using Python 3.6+ (instructions here). Inside the virtual environment, use pip to install the required packages:

(venv)$ pip install -r requirements.txt

The main dependencies are Tensorflow (1.14.0) and Tensorflow Probability (0.7.0).

Installation for CPU

To run on CPU, a version of Tensorflow that does not use GPU must be installed. In requirements.txt, comment out the line that says tensorflow-gpu==1.14.0 and uncomment the line that says tensorflow==1.14.0. Note: the script will be noticeably slower on CPU.

Data

Preprocessed Senate speech data for the 114th Congress is included in data/senate-speeches-114. The original data is from [1]. Preprocessed 2020 Democratic presidential candidate tweet data is included in data/candidate-tweets-2020.

To include a customized data set, first create a repo data/{dataset_name}/clean/. The following four files must be inside this folder:

  • counts.npz: a [num_documents, num_words] sparse CSR matrix containing the word counts for each document.
  • author_indices.npy: a [num_documents] vector where each entry is an integer in the set {0, 1, ..., num_authors - 1}, indicating the author of the corresponding document in counts.npz.
  • vocabulary.txt: a [num_words]-length file where each line denotes the corresponding word in the vocabulary.
  • author_map.txt: a [num_authors]-length file where each line denotes the name of an author in the corpus.

See data/senate-speeches-114/clean for an example of what the four files look like for Senate speeches. The script setup/senate_speeches_to_bag_of_words.py contains example code for creating the four files from unprocessed data.

Learning text-based ideal points

Run tbip.py to produce ideal points. For the Senate speech data, use the command:

(venv)$ python tbip.py  --data=senate-speeches-114  --batch_size=512  --max_steps=100000

You can view Tensorboard while training to see summaries of training (including the learned ideal points and ideological topics). To run Tensorboard, use the command:

(venv)$ tensorboard  --logdir=data/senate-speeches-114/tbip-fits/  --port=6006

The command should output a link where you can view the Tensorboard results in real time. The fitted parameters will be stored in data/senate-speeches-114/tbip-fits/params. To perform the above analyses for the 2020 Democratic candidate tweets, replace senate-speeches-114 with candidate-tweets-2020.

To run custom data, we recommend training Poisson factorization before running the TBIP script for best results. If you have custom data stored in data/{dataset_name}/clean/, you can run

(venv)$ python setup/poisson_factorization.py  --data={dataset_name}

The default number of topics is 50. To use a different number of topics, e.g. 100, use the flag --num_topics=100. After Poisson factorization finishes, use the following command to run the TBIP:

(venv)$ python tbip.py  --data={dataset_name}

You can adjust the batch size, learning rate, number of topics, and number of steps by using the flags --batch_size, --learning_rate, --num_topics, and --max_steps, respectively. To run the TBIP without initializing from Poisson factorization, use the flag --pre_initialize_parameters=False. To view the results in Tensorboard, run

(venv)$ tensorboard  --logdir=data/{dataset_name}/tbip-fits/  --port=6006

Again, the learned parameters will be stored in data/{dataset_name}/tbip-fits/params.

Reproducing Paper Results

NOTE: Since the publication of our paper, we have made small changes to the code that have sped up inference. A byproduct of these changes is that the Tensorflow graph has changed, so its random seed does not produce the same results as before the changes, even though the data, model, and inference are all the same. To reproduce the exact paper results, one must git checkout to a version of our repository from before these changes:

(venv)$ git checkout 31d161e

The commands below will reproduce all of the paper results. The following data is required before running the commands:

  • Senate votes: The original raw data can be found at [2]. The paper includes experiments for Senate sessions 111-114. For each Senate session, we need three files: one for votes, one for members, and one for rollcalls. For example, for Senate session 114, we would use the files: S114_votes.csv, S114_members.csv, S114_rollcalls.csv. Make a repo data/senate-votes and store these three files in data/senate-votes/114/raw/. Repeat for Senate sessions 111-113.
  • Senate speeches: The original raw data can be found at [1]. Specifically, we use the hein-daily data for the 114th Senate session. The files needed are speeches_114.txt, descr_114.txt, and 114_SpeakerMap.txt. Make sure the relevant files are stored in data/senate-speeches-114/raw/.
  • Senator tweets: The data was provided to us by Voxgov [3].
  • Senate speech comparisons: We use a separate data set for the Senate speech comparisons because speech debates must be labeled for Wordshoal. The raw data can be found at [4]. The paper includes experiments for Senate sessions 111-113. We need the files speaker_senator_link_file.csv, speeches_Senate_111.tab, speeches_Senate_112.tab, and speeches_Senate_113.tab. These files should all be stored in data/senate-speech-comparisons/raw/.
  • Democratic presidential candidate tweets: Download the raw tweets here and store tweets.csv in the folder data/candidate-tweets-2020/raw/.

Preprocess, run vote ideal point model, and perform analysis for Senate votes

(venv)$ python setup/preprocess_senate_votes.py  --senate_session=111
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=112
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=113
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=114
(venv)$ python setup/vote_ideal_points.py  --senate_session=111
(venv)$ python setup/vote_ideal_points.py  --senate_session=112
(venv)$ python setup/vote_ideal_points.py  --senate_session=113
(venv)$ python setup/vote_ideal_points.py  --senate_session=114
(venv)$ python analysis/analyze_vote_ideal_points.py

Preprocess, run the TBIP, and perform analysis for Senate speeches for the 114th Senate

(venv)$ python setup/senate_speeches_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=senate-speeches-114
(venv)$ python tbip.py  --data=senate-speeches-114  --counts_transformation=log  --batch_size=512  --max_steps=150000
(venv)$ python analysis/analyze_senate_speeches.py

Preprocess, run the TBIP and Wordfish, and perform analysis for tweets from senators during the 114th Senate

(venv)$ python setup/senate_tweets_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=senate-tweets-114
(venv)$ python tbip.py  --data=senate-tweets-114  --batch_size=1024  --max_steps=100000
(venv)$ python model_comparison/wordfish.py  --data=senate-tweets-114  --max_steps=50000
(venv)$ python analysis/analyze_senate_tweets.py

Preprocess and run the TBIP for Senate speech comparisons

(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=111
(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=112
(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=113
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=111
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=112
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=113
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=111  --batch_size=128
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=112  --batch_size=128
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=113  --batch_size=128

Run Wordfish for Senate speech comparisons

(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=111
(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=112 
(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=113

Run Wordshoal for Senate speech comparisons

(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=111  --batch_size=1024
(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=112  --batch_size=1024
(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=113  --batch_size=1024

Analyze results for Senate speech comparisons

(venv)$ python analysis/compare_tbip_wordfish_wordshoal.py

Preprocess, run the TBIP, and perform analysis for Democratic candidate tweets

(venv)$ python setup/candidate_tweets_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=candidate-tweets-2020
(venv)$ python tbip.py  --data=candidate-tweets-2020  --batch_size=1024  --max_steps=100000
(venv)$ python analysis/analyze_candidate_tweets.py

Make figures

(venv)$ python analysis/make_figures.py

References

[1] Matthew Gentzkow, Jesse M. Shapiro, and Matt Taddy. Congressional Record for the 43rd-114th Congresses: Parsed Speeches and Phrase Counts. Palo Alto, CA: Stanford Libraries [distributor], 2018-01-16. https://data.stanford.edu/congress_text

[2] Jeffrey B. Lewis, Keith Poole, Howard Rosenthal, Adam Boche, Aaron Rudkin, and Luke Sonnet (2020). Voteview: Congressional Roll-Call Votes Database. https://voteview.com/

[3] VoxGovFEDERAL, U.S. Senators tweets from the 114th Congress. 2020. https://voxgov.com

[4] Benjamin E. Lauderdale and Alexander Herzog. Replication Data for: Measuring Political Positions from Legislative Speech. In Harvard Dataverse, 2016. https://doi.org/10.7910/DVN/RQMIV3

Owner
Keyon Vafa
Keyon Vafa
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022