Text-Based Ideal Points

Related tags

Deep Learningtbip
Overview

Text-Based Ideal Points

Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020).

Update (June 29, 2020): We have added interactive visualizations of topics learned by our model.

Update (May 25, 2020): We have added a PyTorch implementation of the text-based ideal point model.

Update (May 11, 2020): See our Colab notebook to run the model online. Our Github code is more complete, and it can be used to reproduce all of our experiments. However, the TBIP is fastest on GPU, so if you do not have access to a GPU you can use Colab's GPUs for free.

Installation for GPU

Configure a virtual environment using Python 3.6+ (instructions here). Inside the virtual environment, use pip to install the required packages:

(venv)$ pip install -r requirements.txt

The main dependencies are Tensorflow (1.14.0) and Tensorflow Probability (0.7.0).

Installation for CPU

To run on CPU, a version of Tensorflow that does not use GPU must be installed. In requirements.txt, comment out the line that says tensorflow-gpu==1.14.0 and uncomment the line that says tensorflow==1.14.0. Note: the script will be noticeably slower on CPU.

Data

Preprocessed Senate speech data for the 114th Congress is included in data/senate-speeches-114. The original data is from [1]. Preprocessed 2020 Democratic presidential candidate tweet data is included in data/candidate-tweets-2020.

To include a customized data set, first create a repo data/{dataset_name}/clean/. The following four files must be inside this folder:

  • counts.npz: a [num_documents, num_words] sparse CSR matrix containing the word counts for each document.
  • author_indices.npy: a [num_documents] vector where each entry is an integer in the set {0, 1, ..., num_authors - 1}, indicating the author of the corresponding document in counts.npz.
  • vocabulary.txt: a [num_words]-length file where each line denotes the corresponding word in the vocabulary.
  • author_map.txt: a [num_authors]-length file where each line denotes the name of an author in the corpus.

See data/senate-speeches-114/clean for an example of what the four files look like for Senate speeches. The script setup/senate_speeches_to_bag_of_words.py contains example code for creating the four files from unprocessed data.

Learning text-based ideal points

Run tbip.py to produce ideal points. For the Senate speech data, use the command:

(venv)$ python tbip.py  --data=senate-speeches-114  --batch_size=512  --max_steps=100000

You can view Tensorboard while training to see summaries of training (including the learned ideal points and ideological topics). To run Tensorboard, use the command:

(venv)$ tensorboard  --logdir=data/senate-speeches-114/tbip-fits/  --port=6006

The command should output a link where you can view the Tensorboard results in real time. The fitted parameters will be stored in data/senate-speeches-114/tbip-fits/params. To perform the above analyses for the 2020 Democratic candidate tweets, replace senate-speeches-114 with candidate-tweets-2020.

To run custom data, we recommend training Poisson factorization before running the TBIP script for best results. If you have custom data stored in data/{dataset_name}/clean/, you can run

(venv)$ python setup/poisson_factorization.py  --data={dataset_name}

The default number of topics is 50. To use a different number of topics, e.g. 100, use the flag --num_topics=100. After Poisson factorization finishes, use the following command to run the TBIP:

(venv)$ python tbip.py  --data={dataset_name}

You can adjust the batch size, learning rate, number of topics, and number of steps by using the flags --batch_size, --learning_rate, --num_topics, and --max_steps, respectively. To run the TBIP without initializing from Poisson factorization, use the flag --pre_initialize_parameters=False. To view the results in Tensorboard, run

(venv)$ tensorboard  --logdir=data/{dataset_name}/tbip-fits/  --port=6006

Again, the learned parameters will be stored in data/{dataset_name}/tbip-fits/params.

Reproducing Paper Results

NOTE: Since the publication of our paper, we have made small changes to the code that have sped up inference. A byproduct of these changes is that the Tensorflow graph has changed, so its random seed does not produce the same results as before the changes, even though the data, model, and inference are all the same. To reproduce the exact paper results, one must git checkout to a version of our repository from before these changes:

(venv)$ git checkout 31d161e

The commands below will reproduce all of the paper results. The following data is required before running the commands:

  • Senate votes: The original raw data can be found at [2]. The paper includes experiments for Senate sessions 111-114. For each Senate session, we need three files: one for votes, one for members, and one for rollcalls. For example, for Senate session 114, we would use the files: S114_votes.csv, S114_members.csv, S114_rollcalls.csv. Make a repo data/senate-votes and store these three files in data/senate-votes/114/raw/. Repeat for Senate sessions 111-113.
  • Senate speeches: The original raw data can be found at [1]. Specifically, we use the hein-daily data for the 114th Senate session. The files needed are speeches_114.txt, descr_114.txt, and 114_SpeakerMap.txt. Make sure the relevant files are stored in data/senate-speeches-114/raw/.
  • Senator tweets: The data was provided to us by Voxgov [3].
  • Senate speech comparisons: We use a separate data set for the Senate speech comparisons because speech debates must be labeled for Wordshoal. The raw data can be found at [4]. The paper includes experiments for Senate sessions 111-113. We need the files speaker_senator_link_file.csv, speeches_Senate_111.tab, speeches_Senate_112.tab, and speeches_Senate_113.tab. These files should all be stored in data/senate-speech-comparisons/raw/.
  • Democratic presidential candidate tweets: Download the raw tweets here and store tweets.csv in the folder data/candidate-tweets-2020/raw/.

Preprocess, run vote ideal point model, and perform analysis for Senate votes

(venv)$ python setup/preprocess_senate_votes.py  --senate_session=111
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=112
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=113
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=114
(venv)$ python setup/vote_ideal_points.py  --senate_session=111
(venv)$ python setup/vote_ideal_points.py  --senate_session=112
(venv)$ python setup/vote_ideal_points.py  --senate_session=113
(venv)$ python setup/vote_ideal_points.py  --senate_session=114
(venv)$ python analysis/analyze_vote_ideal_points.py

Preprocess, run the TBIP, and perform analysis for Senate speeches for the 114th Senate

(venv)$ python setup/senate_speeches_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=senate-speeches-114
(venv)$ python tbip.py  --data=senate-speeches-114  --counts_transformation=log  --batch_size=512  --max_steps=150000
(venv)$ python analysis/analyze_senate_speeches.py

Preprocess, run the TBIP and Wordfish, and perform analysis for tweets from senators during the 114th Senate

(venv)$ python setup/senate_tweets_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=senate-tweets-114
(venv)$ python tbip.py  --data=senate-tweets-114  --batch_size=1024  --max_steps=100000
(venv)$ python model_comparison/wordfish.py  --data=senate-tweets-114  --max_steps=50000
(venv)$ python analysis/analyze_senate_tweets.py

Preprocess and run the TBIP for Senate speech comparisons

(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=111
(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=112
(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=113
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=111
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=112
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=113
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=111  --batch_size=128
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=112  --batch_size=128
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=113  --batch_size=128

Run Wordfish for Senate speech comparisons

(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=111
(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=112 
(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=113

Run Wordshoal for Senate speech comparisons

(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=111  --batch_size=1024
(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=112  --batch_size=1024
(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=113  --batch_size=1024

Analyze results for Senate speech comparisons

(venv)$ python analysis/compare_tbip_wordfish_wordshoal.py

Preprocess, run the TBIP, and perform analysis for Democratic candidate tweets

(venv)$ python setup/candidate_tweets_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=candidate-tweets-2020
(venv)$ python tbip.py  --data=candidate-tweets-2020  --batch_size=1024  --max_steps=100000
(venv)$ python analysis/analyze_candidate_tweets.py

Make figures

(venv)$ python analysis/make_figures.py

References

[1] Matthew Gentzkow, Jesse M. Shapiro, and Matt Taddy. Congressional Record for the 43rd-114th Congresses: Parsed Speeches and Phrase Counts. Palo Alto, CA: Stanford Libraries [distributor], 2018-01-16. https://data.stanford.edu/congress_text

[2] Jeffrey B. Lewis, Keith Poole, Howard Rosenthal, Adam Boche, Aaron Rudkin, and Luke Sonnet (2020). Voteview: Congressional Roll-Call Votes Database. https://voteview.com/

[3] VoxGovFEDERAL, U.S. Senators tweets from the 114th Congress. 2020. https://voxgov.com

[4] Benjamin E. Lauderdale and Alexander Herzog. Replication Data for: Measuring Political Positions from Legislative Speech. In Harvard Dataverse, 2016. https://doi.org/10.7910/DVN/RQMIV3

Owner
Keyon Vafa
Keyon Vafa
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022