Bayesian Image Reconstruction using Deep Generative Models

Related tags

Deep Learningbrgm
Overview

         

diagram

Bayesian Image Reconstruction using Deep Generative Models

R. Marinescu, D. Moyer, P. Golland

For technical inquiries, please create a Github issue. For other inquiries, please contact Razvan Marinescu: [email protected]

For a demo of our BRGM model, see the Colab Notebook.

News

  • Feb 2021: Updated methods section in arXiv paper. We now start from the full Bayesian formulation, and derive the loss function from the MAP estimate (in appendix), and show the graphical model. Code didn't change in this update.
  • Dec 2020: Pre-trained models now available on MIT Dropbox.
  • Nov 2020: Uploaded article pre-print to arXiv.

Requirements

Our method, BRGM, builds on the StyleGAN2 Tensorflow codebase, so our requirements are the same as for StyleGAN2:

  • 64-bit Python 3.6 installation. We recommend Anaconda3 with numpy 1.14.3 or newer.
  • TensorFlow 1.14 (Windows and Linux) or 1.15 (Linux only). TensorFlow 2.x is not supported. On Windows you need to use TensorFlow 1.14, as the standard 1.15 installation does not include necessary C++ headers.
  • One or more high-end NVIDIA GPUs with at least 12GB DRAM, NVIDIA drivers, CUDA 10.0 toolkit and cuDNN 7.5.

Installation from StyleGAN2 Tensorflow environment

If you already have a StyleGAN2 Tensorflow environment in Anaconda, you can clone that environment and additionally install the missing packages:

# clone environment stylegan2 into brgm
conda create --name brgm --clone stylegan2
source activate brgm

# install missing packages
conda install -c menpo opencv
conda install scikit-image==0.17.2

Installation from scratch with Anaconda

Create conda environment and install packages:

conda create -n "brgm" python=3.6.8 tensorflow-gpu==1.15.0 requests==2.22.0 Pillow==6.2.1 numpy==1.17.4 scikit-image==0.17.2

source activate brgm

conda install -c menpo opencv
conda install -c anaconda scipy

Clone this github repository:

git clone https://github.com/razvanmarinescu/brgm.git 

Image reconstruction with pre-trained StyleGAN2 generators

Super-resolution with pre-trained FFHQ generator, on a set of unseen input images (datasets/ffhq), with super-resolution factor x32. The tag argument is optional, and appends that string to the results folder:

python recon.py recon-real-images --input=datasets/ffhq --tag=ffhq \
 --network=dropbox:ffhq.pkl --recontype=super-resolution --superres-factor 32

Inpainting with pre-trained Xray generator (MIMIC III), using mask files from masks/1024x1024/ that match the image names exactly:

python recon.py recon-real-images --input=datasets/xray --tag=xray \
 --network=dropbox:xray.pkl --recontype=inpaint --masks=masks/1024x1024

Super-resolution on brain dataset with factor x8:

python recon.py recon-real-images --input=datasets/brains --tag=brains \
 --network=dropbox:brains.pkl --recontype=super-resolution --superres-factor 8

Running on your images

For running on your images, pass a new folder with .png/.jpg images to --input. For inpainting, you need to pass an additional masks folder to --masks, which contains a mask file for each image in the --input folder.

Training new StyleGAN2 generators

Follow the StyleGAN2 instructions for how to train a new generator network. In short, given a folder of images , you need to first prepare a TFRecord dataset, and then run the training code:

python dataset_tool.py create_from_images ~/datasets/my-custom-dataset ~/my-custom-images

python run_training.py --num-gpus=8 --data-dir=datasets --config=config-e --dataset=my-custom-dataset --mirror-augment=true
Owner
Razvan Valentin Marinescu
Postdoc Researcher working on medical imaging, machine learning and bayesian statistics.
Razvan Valentin Marinescu
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
FreeSOLO for unsupervised instance segmentation, CVPR 2022

FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc

NVIDIA Research Projects 253 Jan 02, 2023
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022