Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

Overview

TransNAS-Bench-101

This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

In this Markdown file, we show an example how to use TransNAS-Bench-101. The complete network training and evaluation information file can be found through VEGA.

How to use TransNAS-Bench-101

  1. Import the API object in ./code/api/api.py and create an API instance from the .pth file in ./api_home/: ​
from api import TransNASBenchAPI as API
path2nas_bench_file = "./api_home/transnas-bench_v10141024.pth"
api = API(path2nas_bench_file)
  1. Check the task information, number of architectures evaluated, and search spaces:
# show number of architectures and number of tasks
length = len(api)
task_list = api.task_list # list of tasks
print(f"This API contains {length} architectures in total across {len(task_list)} tasks.")
# This API contains 7352 architectures in total across 7 tasks.

# Check all model encoding
search_spaces = api.search_spaces # list of search space names
all_arch_dict = api.all_arch_dict # {search_space : list_of_architecture_names}
for ss in search_spaces:
   print(f"Search space '{ss}' contains {len(all_arch_dict[ss])} architectures.")
print(f"Names of 7 tasks: {task_list}")
# Search space 'macro' contains 3256 architectures.
# Search space 'micro' contains 4096 architectures.
# Names of 7 tasks: ['class_scene', 'class_object', 'room_layout', 'jigsaw', 'segmentsemantic', 'normal', 'autoencoder']
  1. Since different tasks may require different evaluation metrics, hence metric_dict showing the used metrics can be retrieved from api.metrics_dict. TransNAS-Bench API also recorded the model inference time, backbone/model parameters, backbone/model FLOPs in api.infor_names.
metrics_dict = api.metrics_dict # {task_name : list_of_metrics}
info_names = api.info_names # list of model info names

# check the training information of the example task
task = "class_object"
print(f"Task {task} recorded the following metrics: {metrics_dict[task]}")
print(f"The following model information are also recorded: {info_names}")
# Task class_object recorded the following metrics: ['train_top1', 'train_top5', 'train_loss', 'valid_top1', 'valid_top5', 'valid_loss', 'test_top1', 'test_top5', 'test_loss', 'time_elapsed']
# The following model information are also recorded: ['inference_time', 'encoder_params', 'model_params', 'model_FLOPs', 'encoder_FLOPs']
  1. Query the results of an architecture by arch string ​
# Given arch string
xarch = api.index2arch(1) # '64-2311-basic'
for xtask in api.task_list:
    print(f'----- {xtask} -----')
    print(f'--- info ---')
    for xinfo in api.info_names:
        print(f"{xinfo} : {api.get_model_info(xarch, xtask, xinfo)}")
    print(f'--- metrics ---')
    for xmetric in api.metrics_dict[xtask]:
        print(f"{xmetric} : {api.get_single_metric(xarch, xtask, xmetric, mode='best')}")
        print(f"best epoch : {api.get_best_epoch_status(xarch, xtask, metric=xmetric)}")
        print(f"final epoch : {api.get_epoch_status(xarch, xtask, epoch=-1)}")
        if ('valid' in xmetric and 'loss' not in xmetric) or ('valid' in xmetric and 'neg_loss' in xmetric):
            print(f"\nbest_arch -- {xmetric}: {api.get_best_archs(xtask, xmetric, 'micro')[0]}")

A complete example is given in code/api/example.py

  • cd code/api
  • python example.py

Example network encoding in both search spaces

Macro example network: 64-1234-basic
- Base channel: 64
- Macro skeleton: 1234 (4 stacked modules)
  - [m1(normal)-m2(channelx2)-m3(resolution/2)-m4(channelx2 & resolution/2)]
- Cell structure: basic (ResNet Basic Block)

Micro example network: 64-41414-1_02_333
- Base channel: 64
- Macro skeleton: 41414 (5 stacked modules)
  - [m1(channelx2 & resolution/2)-m2(normal)-m3(channelx2 & resolution/2)-m4(normal)-m5(channelx2 & resolution/2)]
- Cell structure: 1_02_333 (4 nodes, 6 edges)
  - node0: input tensor
  - node1: Skip-Connect( node0 ) # 1
  - node2: None( node0 ) + Conv1x1( node1 ) # 02
  - node3: Conv3x3( node0 ) + Conv3x3( node1 ) + Conv3x3( node2 ) # 333

Citation

If you find that TransNAS-Bench-101 helps your research, please consider citing it:

@inproceedings{duan2021transnas,
  title = {TransNAS-Bench-101: Improving Transferability and Generalizability of Cross-Task Neural Architecture Search},
  author = {Duan, Yawen and Chen, Xin and Xu, Hang and Chen, Zewei and Liang, Xiaodan and Zhang, Tong and Li, Zhenguo},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages = {5251--5260},
  year = {2021}
}
Owner
Yawen Duan
Visiting Research Student at CHAI, UC Berkeley; B.Sc. in Decision Analytics at HKU
Yawen Duan
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022