Mengzi Pretrained Models

Overview

中文 | English

Mengzi

尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。

我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

基于语言学信息融入和训练加速等方法,我们研发了 Mengzi 系列模型。由于与 BERT 保持一致的模型结构,Mengzi 模型可以快速替换现有的预训练模型。

详细的技术报告请参考:

Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese

导航

快速上手

Mengzi-BERT

# 使用 Huggingface transformers 加载
from transformers import BertTokenizer, BertModel

tokenizer = BertTokenizer.from_pretrained("Langboat/mengzi-bert-base")
model = BertModel.from_pretrained("Langboat/mengzi-bert-base")

Mengzi-T5

# 使用 Huggingface transformers 加载
from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("Langboat/mengzi-t5-base")
model = T5ForConditionalGeneration.from_pretrained("Langboat/mengzi-t5-base")

Mengzi-Oscar

参考文档

依赖安装

pip install transformers

下游任务

CLUE 分数

Model AFQMC TNEWS IFLYTEK CMNLI WSC CSL CMRC2018 C3 CHID
RoBERTa-wwm-ext 74.30 57.51 60.80 80.70 67.20 80.67 77.59 67.06 83.78
Mengzi-BERT-base 74.58 57.97 60.68 82.12 87.50 85.40 78.54 71.70 84.16

RoBERTa-wwm-ext 的分数来自 CLUE baseline

对应超参

Task Learning rate Batch size Epochs
AFQMC 3e-5 32 10
TNEWS 3e-5 128 10
IFLYTEK 3e-5 64 10
CMNLI 3e-5 512 10
WSC 8e-6 64 50
CSL 5e-5 128 5
CMRC2018 5e-5 8 5
C3 1e-4 240 3
CHID 5e-5 256 5

下载链接

联系方式

微信讨论群

邮箱

wangyulong[at]chuangxin[dot]com

免责声明

该项目中的内容仅供技术研究参考,不作为任何结论性依据。使用者可以在许可证范围内任意使用该模型,但我们不对因使用该项目内容造成的直接或间接损失负责。技术报告中所呈现的实验结果仅表明在特定数据集和超参组合下的表现,并不能代表各个模型的本质。 实验结果可能因随机数种子,计算设备而发生改变。

使用者以各种方式使用本模型(包括但不限于修改使用、直接使用、通过第三方使用)的过程中,不得以任何方式利用本模型直接或间接从事违反所属法域的法律法规、以及社会公德的行为。使用者需对自身行为负责,因使用本模型引发的一切纠纷,由使用者自行承担全部法律及连带责任。我们不承担任何法律及连带责任。

我们拥有对本免责声明的解释、修改及更新权。

文献引用

@misc{zhang2021mengzi,
      title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese}, 
      author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
      year={2021},
      eprint={2110.06696},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Langboat
Langboat
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023