Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

Related tags

Deep LearningAimCLR
Overview

AimCLR

This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

Requirements

Python >=3.6 PyTorch >=1.6

Data Preparation

  • Download the raw data of NTU RGB+D and PKU-MMD.
  • For NTU RGB+D dataset, preprocess data with tools/ntu_gendata.py. For PKU-MMD dataset, preprocess data with tools/pku_part1_gendata.py.
  • Then downsample the data to 50 frames with feeder/preprocess_ntu.py and feeder/preprocess_pku.py.
  • If you don't want to process the original data, download the file folder action_dataset.

Installation

# Install torchlight
$ cd torchlight
$ python setup.py install
$ cd ..

# Install other python libraries
$ pip install -r requirements.txt

Unsupervised Pre-Training

Example for unsupervised pre-training of 3s-AimCLR. You can change some settings of .yaml files in config/ntu60/pretext folder.

# train on NTU RGB+D xview joint stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_joint.yaml

# train on NTU RGB+D xview motion stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_motion.yaml

# train on NTU RGB+D xview bone stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_bone.yaml

Linear Evaluation

Example for linear evaluation of 3s-AimCLR. You can change .yaml files in config/ntu60/linear_eval folder.

# Linear_eval on NTU RGB+D xview
$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_joint.yaml

$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_motion.yaml

$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_bone.yaml

Trained models

We release several trained models in released_model. The performance is better than that reported in the paper. You can download them and test them with linear evaluation by changing weights in .yaml files.

Model NTU 60 xsub (%) NTU 60 xview (%) PKU-MMD Part I (%)
AimCLR-joint 74.34 79.68 83.43
AimCLR-motion 68.68 71.83 72.00
AimCLR-bone 71.87 77.02 82.03
3s-AimCLR 79.18 84.02 87.79

Visualization

The t-SNE visualization of the embeddings after AimCLR pre-training on NTU60-xsub.

Citation

Please cite our paper if you find this repository useful in your resesarch:

@inproceedings{guo2022aimclr,
  Title= {Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition},
  Author= {Tianyu, Guo and Hong, Liu and Zhan, Chen and Mengyuan, Liu and Tao, Wang  and Runwei, Ding},
  Booktitle= {AAAI},
  Year= {2022}
}

Acknowledgement

The framework of our code is extended from the following repositories. We sincerely thank the authors for releasing the codes.

  • The framework of our code is based on CrosSCLR.
  • The encoder is based on ST-GCN.

Licence

This project is licensed under the terms of the MIT license.

Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022