[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

Overview

MMChat

This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media.

Dataset

MMChat is a large-scale dialogue dataset that contains image-grounded dialogues in Chinese. Each dialogue in MMChat is associated with one or more images (maximum 9 images per dialogue). We design various strategies to ensure the quality of the dialogues in MMChat. Please read our paper for more details. The images in the dataset are hosted on Weibo's static image server. You can refer to the scripts provided in data_processing/weibo_image_crawler to download these images.

Two sample dialogues form MMChat are given below (translated from Chinese): A sample dialogue from MMChat

MMChat is released in different versions:

Rule Filtered Raw MMChat

This version of MMChat contains raw dialogues filtered by our rules. The following table shows some basic statistics:

Item Description Count
Sessions 4.257 M
Sessions with more than 4 utterances 2.304 M
Utterances 18.590 M
Images 4.874 M
Avg. utterance per session 4.367
Avg. image per session 1.670
Avg. character per utterance 14.104

We devide above dialogues into 9 splits to facilitate the download:

  1. Split0 Google Drive, Baidu Netdisk
  2. Split1 Google Drive, Baidu Netdisk
  3. Split2 Google Drive, Baidu Netdisk
  4. Split3 Google Drive, Baidu Netdisk
  5. Split4 Google Drive, Baidu Netdisk
  6. Split5 Google Drive, Baidu Netdisk
  7. Split6 Google Drive, Baidu Netdisk
  8. Split7 Google Drive, Baidu Netdisk
  9. Split8 Google Drive, Baidu Netdisk

LCCC Filtered MMChat

This version of MMChat contains the dialogues that are filtered based on the LCCC (Large-scale Cleaned Chinese Conversation) dataset. Specifically, some dialogues in MMChat are also contained in LCCC. We regard these dialogues as cleaner dialogues since sophisticated schemes are designed in LCCC to filter out noises. This version of MMChat is obtained using the script data_processing/LCCC_filter.py The following table shows some basic statistics:

Item Description Count
Sessions 492.6 K
Sessions with more than 4 utterances 208.8 K
Utterances 1.986 M
Images 1.066 M
Avg. utterance per session 4.031
Avg. image per session 2.514
Avg. character per utterance 11.336

We devide above dialogues into 9 splits to facilitate the download:

  1. Split0 Google Drive, Baidu Netdisk
  2. Split1 Google Drive, Baidu Netdisk
  3. Split2 Google Drive, Baidu Netdisk
  4. Split3 Google Drive, Baidu Netdisk
  5. Split4 Google Drive, Baidu Netdisk
  6. Split5 Google Drive, Baidu Netdisk
  7. Split6 Google Drive, Baidu Netdisk
  8. Split7 Google Drive, Baidu Netdisk
  9. Split8 Google Drive, Baidu Netdisk

MMChat

The MMChat dataset reported in our paper are given here. The Weibo content corresponding to these dialogues are all "分享图片", (i.e., "Share Images" in English). The following table shows some basic statistics:

Item Description Count
Sessions 120.84 K
Sessions with more than 4 utterances 17.32 K
Utterances 314.13 K
Images 198.82 K
Avg. utterance per session 2.599
Avg. image per session 2.791
Avg. character per utterance 8.521

The above dialogues can be downloaded from either Google Drive or Baidu Netdisk.

MMChat-hf

We perform human annotation on the sampled dialogues to determine whether the given images are related to the corresponding dialogues. The following table only shows the statistics for dialogues that are annotated as image-related.

Item Description Count
Sessions 19.90 K
Sessions with more than 4 utterances 8.91 K
Utterances 81.06 K
Images 52.66K
Avg. utterance per session 4.07
Avg. image per session 2.70
Avg. character per utterance 11.93

We annotated about 100K dialogues. All the annotated dialogues can be downloaded from either Google Drive or Baidu Netdisk.

Code

We are also releasing all the codes used for our experiments. You can use the script run_training.sh in each folder to launch the distributed training.

For models that require image features, you can extract the image features using the scripts in data_processing/extract_image_features

The model shown in our paper can be found in dialog_image: Model

Reference

Please cite our paper if you find our work useful ;)

@inproceedings{zheng2022MMChat,
  author    = {Zheng, Yinhe and Chen, Guanyi and Liu, Xin and Sun, Jian},
  title     = {MMChat: Multi-Modal Chat Dataset on Social Media},
  booktitle = {Proceedings of The 13th Language Resources and Evaluation Conference},
  year      = {2022},
  publisher = {European Language Resources Association},
}
@inproceedings{wang2020chinese,
  title     = {A Large-Scale Chinese Short-Text Conversation Dataset},
  author    = {Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},
  booktitle = {NLPCC},
  year      = {2020},
  url       = {https://arxiv.org/abs/2008.03946}
}
Owner
Silver
Dialogue System, Natural Language Processing
Silver
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022