code for generating data set ES-ImageNet with corresponding training code

Overview

es-imagenet-master

image

code for generating data set ES-ImageNet with corresponding training code

dataset generator

  • some codes of ODG algorithm
  • The variables to be modified include datapath (data storage path after transformation, which needs to be created before transformation) and root_Path (root directory of training set before transformation)
file name function
traconvert.py converting training set of ISLVRC 2012 into event stream using ODG
trainlabel_dir.txt It stores the corresponding relationship between the class name and label of the original Imagenet file
trainlabel.txt It is generated during transformation and stores the label of training set
valconvert.py Transformation code for test set.
valorigin.txt Original test label, need and valconvert.py Put it in the same folder
vallabel.txt It is generated during transformation and stores the label of training set.

dataset usage

  • codes are in ./datasets
  • some traing examples are provided for ES-imagenet in ./example An example code for easily using this dataset based on Pytorch
from __future__ import print_function
import sys
sys.path.append("..")
from datasets.es_imagenet_new import ESImagenet_Dataset
import torch.nn as nn
import torch

data_path = None #TODO:modify 
train_dataset = ESImagenet_Dataset(mode='train',data_set_path=data_path)
test_dataset = ESImagenet_Dataset(mode='test',data_set_path=data_path)

train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
test_sampler  = torch.utils.data.distributed.DistributedSampler(test_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=False, num_workers=1,pin_memory=True,drop_last=True,sampler=train_sampler)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=1,pin_memory=True)

for batch_idx, (inputs, targets) in enumerate(train_loader)
  pass
  # input = [batchsize,time,channel,width,height]
  
for batch_idx, (inputs, targets) in enumerate(test_loader):
  pass
  # input = [batchsize,time,channel,width,height]

training example and benchmarks

Requirements

  • Python >= 3.5
  • Pytorch >= 1.7
  • CUDA >=10.0
  • TenosrBoradX(optional)

Train the baseline models

$ cd example

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 example_ES_res18.py #LIAF/LIF-ResNet-18
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 example_ES_res34.py #LIAF/LIF-ResNet-34
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 compare_ES_3DCNN34.py #3DCNN-ResNet-34
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 compare_ES_3DCNN18.py #3DCNN-ResNet-18
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 compare_ES_2DCNN34.py #2DCNN-ResNet-34 
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 compare_ES_2DCNN18.py #2DCNN-ResNet-18
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 compare_CONVLSTM.py #ConvLSTM (no used in paper)
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 example_ES_res50.py #LIAF/LIF-ResNet-50 (no used in paper)

** note:** To select LIF mode, change the config files under /LIAFnet : self.actFun= torch.nn.LeakyReLU(0.2, inplace=False) #nexttest:selu to self.actFun= LIAF.LIFactFun.apply

baseline / Benchmark

Network layer Type Test Acc/% # of Para FP32+/GFLOPs FP32x/GFLOPs
ResNet18 2D-CNN 41.030 11.68M 1.575 1.770
ResNet18 3D-CNN 38.050 28.56M 12.082 12.493
ResNet18 LIF 39.894 11.69M 12.668 0.269
ResNet18 LIAF 42.544 11.69M 12.668 14.159
ResNet34 2D-CNN 42.736 21.79M 3.211 3.611
ResNet34 3D-CNN 39.410 48.22M 20.671 21.411
ResNet34 LIF 43.424 21.80M 25.783 0.288
ResNet18+imagenet-pretrain (a) LIF 43.74 11.69M 12.668 0.269
ResNet34 LIAF 47.466 21.80M 25.783 28.901
ResNet18+self-pretrain LIAF 50.54 11.69M 12.668 14.159
ResNet18+imagenet-pretrain (b) LIAF 52.25 11.69M 12.668 14.159
ResNet34+imagenet-pretrain (c) LIAF 51.83 21.80M 25.783 28.901

Note: model (a), (b) and (c) are stored in ./pretrained_model

Download

  • The datasets ES-ImageNet (100GB) for this study can be download in the Tsinghua Cloud or Openl

  • The converted event-frame version (40GB) can be found in Tsinghua Cloud

Citation

If you use this for research, please cite. Here is an example BibTeX entry:

@misc{lin2021esimagenet,
    title={ES-ImageNet: A Million Event-Stream Classification Dataset for Spiking Neural Networks},
    author={Yihan Lin and Wei Ding and Shaohua Qiang and Lei Deng and Guoqi Li},
    year={2021},
    eprint={2110.12211},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
You might also like...
Code for the paper
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

Official Pytorch Implementation of:
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Comments
  • Cannot find validation dataset

    Cannot find validation dataset

    Hello,

    Thanks for the open-sourced code. However, I had trouble finding the validation set. I directly download the frame set in your cloud server. However, I direct uncompress the file and I didn't find the validation dataset. Also, your dataset_generator/vallabel.txt is empty. How can I find the validation index file and the dataset?

    Thanks.

    opened by yhhhli 4
Releases(1.1.0)
Owner
Ordinarabbit
Phd student of CBICR, Tsinghua University
Ordinarabbit
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021