CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Related tags

Deep LearningF-LSeSim
Overview

Spatially-Correlative Loss

arXiv | website


We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Tasks". Based on the inherent self-similarity of object, we propose a new structure-preserving loss for one-sided unsupervised I2I network. The new loss will deal only with spatial relationship of repeated signal, regardless of their original absolute value.

The Spatially-Correlative Loss for Various Image Translation Tasks
Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai
NTU and Monash University
In CVPR2021

ToDo

  • release the single-modal I2I model
  • a simple example to use the proposed loss

Example Results

Unpaired Image-to-Image Translation

Single Image Translation

More results on project page

Getting Started

Installation

This code was tested with Pytorch 1.7.0, CUDA 10.2, and Python 3.7

pip install visdom dominate
  • Clone this repo:
git clone https://github.com/lyndonzheng/F-LSeSim
cd F-LSeSim

Datasets

Please refer to the original CUT and CycleGAN to download datasets and learn how to create your own datasets.

Training

  • Train the single-modal I2I translation model:
sh ./scripts/train_sc.sh 
  • Set --use_norm for cosine similarity map, the default similarity is dot-based attention score. --learned_attn, --augment for the learned self-similarity.

  • To view training results and loss plots, run python -m visdom.server and copy the URL http://localhost:port.

  • Training models will be saved under the checkpoints folder.

  • The more training options can be found in the options folder.

  • Train the single-image translation model:

sh ./scripts/train_sinsc.sh 

As the multi-modal I2I translation model was trained on MUNIT, we would not plan to merge the code to this repository. If you wish to obtain multi-modal results, please contact us at [email protected].

Testing

  • Test the single-modal I2I translation model:
sh ./scripts/test_sc.sh
  • Test the single-image translation model:
sh ./scripts/test_sinsc.sh
  • Test the FID score for all training epochs:
sh ./scripts/test_fid.sh

Pretrained Models

Download the pre-trained models (will be released soon) using the following links and put them undercheckpoints/ directory.

Citation

@inproceedings{zheng2021spatiallycorrelative,
  title={The Spatially-Correlative Loss for Various Image Translation Tasks},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Acknowledge

Our code is developed based on CUT and CycleGAN. We also thank pytorch-fid for FID computation, LPIPS for diversity score, and D&C for density and coverage evaluation.

Owner
Chuanxia Zheng
Chuanxia Zheng
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Unsupervised Image-to-Image Translation

UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It

Ming-Yu Liu 劉洺堉 1.9k Dec 26, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
Solver for Large-Scale Rank-One Semidefinite Relaxations

STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for

48 Dec 20, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021