It is a forest of random projection trees

Overview

rpforest

rpforest

CircleCI

rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given query point in a fast but approximate manner.

rpforest differs from alternative ANN packages such as annoy by not requiring the storage of all the vectors indexed in the model. Used in this way, rpforest serves to produce a list of candidate ANNs for use by a further service where point vectors are stored (for example, a relational database).

How it works

It works by building a forest of N binary random projection trees.

In each tree, the set of training points is recursively partitioned into smaller and smaller subsets until a leaf node of at most M points is reached. Each parition is based on the cosine of the angle the points make with a randomly drawn hyperplane: points whose angle is smaller than the median angle fall in the left partition, and the remaining points fall in the right partition.

The resulting tree has predictable leaf size (no larger than M) and is approximately balanced because of median splits, leading to consistent tree traversal times.

Querying the model is accomplished by traversing each tree to the query point's leaf node to retrieve ANN candidates from that tree, then merging them and sorting by distance to the query point.

Installation

  1. Install numpy first.
  2. Install rpforest using pip: pip install rpforest

Usage

Fitting

Model fitting is straightforward:

from rpforest import RPForest

model = RPForest(leaf_size=50, no_trees=10)
model.fit(X)

The speed-precision tradeoff is governed by the leaf_size and no_trees parameters. Increasing leaf_size leads the model to produce shallower trees with larger leaf nodes; increasing no_trees fits more trees.

In-memory queries

Where the entire set of points can be kept in memory, rpforest supports in-memory ANN queries. After fitting, ANNs can be obtained by calling:

nns = model.query(x_query, 10)

Return nearest neighbours for vector x by first retrieving candidate NNs from x's leaf nodes, then merging them and sorting by cosine similarity with x. At most no_trees * leaf_size NNs will can be returned.

Candidate queries

rpforest can support indexing and candidate ANN queries on datasets larger than would fit in available memory. This is accomplished by first fitting the model on a subset of the data, then indexing a larger set of data into the fitted model:

from rpforest import RPForest

model = RPForest(leaf_size=50, no_trees=10)
model.fit(X_train)

model.clear()  # Deletes X_train vectors

for point_id, x in get_x_vectors():
     model.index(point_id, x)

nns = model.get_candidates(x_query, 10)

Model persistence

Model persistence is achieved simply by pickling and unpickling.

model = pickle.loads(pickle.dumps(model))

Performance

Erik Bernhardsson, the author of annoy, maintains an ANN performance shootout repository, comparing a number of Python ANN packages.

On the GloVe cosine distance benchmark, rpforest is not as fast as highly optimised C and C++ packages like FLANN and annoy. However, it far outerpforms scikit-learn's LSHForest and panns.

Performance

Development

Pull requests are welcome. To install for development:

  1. Clone the rpforest repository: git clone [email protected]:lyst/rpforest.git
  2. Install it for development using pip: cd rpforest && pip install -e .
  3. You can run tests by running python setupy.py test.

When making changes to the .pyx extension files, you'll need to run python setup.py cythonize in order to produce the extension .cpp files before running pip install -e ..

Comments
  • Is rpforest supports custom similarity/distance function

    Is rpforest supports custom similarity/distance function

    hi, @maciejkula , According to your paper titled "Metadata Embeddings for User and Item Cold-start Recommendations", lyst generate recommendation using lightfm and some kind of ANN algorithm. So I came to rpforest in lyst's repository and I think maybe that's exactly the ANN. Now Suppose that we have trained a lightfm model, include embeddings and bias. It seems that it is still hard to rapidly generate top-k recommendation using rpforest, Since as Readme said, rpforest is based on cosine similarity, however, the score for a user-item pair in lightfm is the sum of a dot product of two embeddings and two bias. So my question is:

    Is rpforest supports custom similarity/distance function, or some other way can achieve top-k recommendation?

    thanks jianyi

    opened by hiyijian 10
  • Compile error when installing rpforest

    Compile error when installing rpforest

    In file included from rpforest/rpforest_fast.cpp:271:
    
    In file included from /usr/local/lib/python2.7/site-packages/numpy/core/include/numpy/arrayobject.h:4:
    
    In file included from /usr/local/lib/python2.7/site-packages/numpy/core/include/numpy/ndarrayobject.h:17:
    
    In file included from /usr/local/lib/python2.7/site-packages/numpy/core/include/numpy/ndarraytypes.h:1804:
    
    /usr/local/lib/python2.7/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:15:2: warning: "Using deprecated NumPy API, disable it by "          "#defining NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-W#warnings]
    
    #warning "Using deprecated NumPy API, disable it by " \
    
     ^
    
    rpforest/rpforest_fast.cpp:5727:28: error: no member named 'shrink_to_fit' in 'std::vector<int, std::allocator<int> >'
    
        __pyx_v_node->indices->shrink_to_fit();
    
        ~~~~~~~~~~~~~~~~~~~~~  ^
    
    rpforest/rpforest_fast.cpp:5940:28: error: no member named 'shrink_to_fit' in 'std::vector<int, std::allocator<int> >'
    
        __pyx_v_node->indices->shrink_to_fit();
    
        ~~~~~~~~~~~~~~~~~~~~~  ^
    
    1 warning and 2 errors generated.
    
    error: command 'gcc' failed with exit status 1
    
    opened by delip 10
  • Does windows support the libs

    Does windows support the libs

    In win7 environment, when i install rpforest ,i met the problem. i use vs2015. the complie error informatios: C:\Users\juine\AppData\Local\Programs\Common\Microsoft\Visual C++ for Python \9.0\VC\Bin\cl.exe /c logo /Ox /MD /W3 /GS- /DNDEBUG -ID:\Python27\lib\site-p ackages\numpy\core\include -ID:\Python27\include -ID:\Python27\PC /Tprpforest/rp forest_fast.cpp /Fobuild\temp.win32-2.7\Release\rpforest/rpforest_fast.obj -ffas t-math cl : Command line warning D9002 : ignoring unknown option '-ffast-math' rpforest_fast.cpp d:\python27\lib\site-packages\numpy\core\include\numpy\npy_1_7_deprecated_ap i.h(12) : Warning Msg: Using deprecated NumPy API, disable it by #defining NPY_N O_DEPRECATED_API NPY_1_7_API_VERSION rpforest/rpforest_fast.cpp(271) : fatal error C1083: Cannot open include fil e: 'stdint.h': No such file or directory error: command 'C:\Users\juine\AppData\Local\Programs\Common\Microsof t\Visual C++ for Python\9.0\VC\Bin\cl.exe' failed with exit status 2

    opened by juine 4
  • C++ error with python 3.5

    C++ error with python 3.5

    Hello, I'm trying to fir an rpforet module on a big matrix (3000000 x 300) in python 3.5 on OS X 10.11 and I get the following error:

    Traceback (most recent call last):
      File "rpforest_test.py", line 29, in <module>
        index.fit(model.syn0)
      File "/usr/local/lib/python3.5/site-packages/rpforest/rpforest.py", line 81, in fit
        tree.make_tree(self._X)
      File "rpforest/rpforest_fast.pyx", line 237, in rpforest.rpforest_fast.Tree.make_tree (rpforest/rpforest_fast.cpp:3896)
    ValueError: Buffer dtype mismatch, expected 'double' but got 'float'
    
    opened by w4nderlust 2
  • Errors installing rpforest in conda environment on Mac OS X

    Errors installing rpforest in conda environment on Mac OS X

    OS/compiler details:

    OS X version: 10.11.2 (El Capitan)

    $ clang --version
    Apple LLVM version 7.0.2 (clang-700.1.81)
    Target: x86_64-apple-darwin15.2.0
    Thread model: posix
    

    gcc is an alias for clang.

    Installing rpforest in a fresh virtualenv environment works fine:

    $ mkvirtualenv rpfenv
    ... python 3.4 env built ...
    (rpfenv)$ pip install numpy
    ... numpy 1.10.2 installed ...
    (rpfenv)$ pip install rpforest
    ... rpforest 1.1 installed ...
    

    rpforest_fast was compiled successfully with:

    clang -Wno-unused-result -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/dsc/.virtualenvs/rpfenv/lib/python3.4/site-packages/numpy/core/include -I/usr/local/Cellar/python3/3.4.3_2/Frameworks/Python.framework/Versions/3.4/include/python3.4m -c rpforest/rpforest_fast.cpp -o build/temp.macosx-10.10-x86_64-3.4/rpforest/rpforest_fast.o -std=c++11
    

    Trying to do the same in a conda environment results in compilation errors however:

    $ conda create -n rpfenv2 python=3.4
    ... python 3.4 env built ...
    $ source activate rpfenv2
    (rpfenv2)$ pip install numpy
    ... numpy 1.10.2 installed ...
    (rpfenv2)$ pip install rpforest
    

    rpforest 1.1 is downloaded, but compilation fails. Compilation command:

    clang -fno-strict-aliasing -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/dsc/miniconda3/envs/rpfenv2/include -arch x86_64 -I/Users/dsc/miniconda3/envs/rpfenv2/lib/python3.4/site-packages/numpy/core/include -I/Users/dsc/miniconda3/envs/rpfenv2/include/python3.4m -c rpforest/rpforest_fast.cpp -o build/temp.macosx-10.5-x86_64-3.4/rpforest/rpforest_fast.o -std=c++11
    

    Compiler errors:

      In file included from rpforest/rpforest_fast.cpp:271:
      In file included from /Users/dsc/miniconda3/envs/rpfenv2/lib/python3.4/site-packages/numpy/core/include/numpy/arrayobject.h:4:
      In file included from /Users/dsc/miniconda3/envs/rpfenv2/lib/python3.4/site-packages/numpy/core/include/numpy/ndarrayobject.h:18:
      In file included from /Users/dsc/miniconda3/envs/rpfenv2/lib/python3.4/site-packages/numpy/core/include/numpy/ndarraytypes.h:1781:
      /Users/dsc/miniconda3/envs/rpfenv2/lib/python3.4/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:15:2: warning: "Using deprecated NumPy API, disable it by "          "#defining NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-W#warnings]
      #warning "Using deprecated NumPy API, disable it by " \
       ^
      rpforest/rpforest_fast.cpp:5727:28: error: no member named 'shrink_to_fit' in 'std::vector<int, std::allocator<int> >'
          __pyx_v_node->indices->shrink_to_fit();
          ~~~~~~~~~~~~~~~~~~~~~  ^
      rpforest/rpforest_fast.cpp:5940:28: error: no member named 'shrink_to_fit' in 'std::vector<int, std::allocator<int> >'
          __pyx_v_node->indices->shrink_to_fit();
          ~~~~~~~~~~~~~~~~~~~~~  ^
      1 warning and 2 errors generated.
      error: command 'clang' failed with exit status 1
    
    opened by davechallis 1
  • label points that are being fit()

    label points that are being fit()

    I'm not sure if the implementation already supports this, but is it possible assign a label with every point with fit(), so when there is a query, I can identify the neighbors by the labels?

    opened by delip 1
  • CircleCI 2.0, tox, py35+ tests and support

    CircleCI 2.0, tox, py35+ tests and support

    Decided to use tox, so that you can:

    • run tests locally in multiple python versions
    • have a consistent testing platform across CI and local environment

    Also:

    • updated readme
    • refactored setup.py ... made it not a fatal exception if python setup.py is run without an installed numpy
    • fixed flake8 issues
    • black-ified code
    • fixed tests code to support py35+
    • updated cpp library with the latest cython 0.29.14 (previously 0.23.4)
    opened by iserko 0
  • Reuse hyperplanes

    Reuse hyperplanes

    This PR makes all interior nodes of a tree at a given depth now use the same projection hyperplane. This drastically reduces the memory footprint of the tree without affecting the guarantees of the data structure (which relies on the hyperplanes being independently drawn _ between_ the trees in the forest).

    opened by maciejkula 0
  • Raising error when tree already exists

    Raising error when tree already exists

    Referencing https://github.com/lyst/rpforest/blob/master/rpforest/rpforest.py#L59

    The tree already exists, so is there a way to handle this gracefully instead of raising an error?

    opened by RitwikGupta 0
Owner
Lyst
Your World of Fashion
Lyst
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

ZhihuiYangCS 8 Jun 07, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023