A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

Related tags

Deep Learningomni
Overview

OMNI

A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

omni

Why?

When I finished my Kubernetes cluster using a few Raspberry Pis, the first thing I wanted to do is install Prometheus + Grafana for monitoring, and so I did. But when I had all of it working I found a few drawbacks:

  • The Prometheus exporter pods use a lot of RAM
  • The Prometheus exporter pods use a considerable amount of CPU
  • Prometheus gathers way too much data that I don't really need.
  • The node where the main Prometheus pod is installed gets all of the information and saves it in its own database, constantly performing a lot of writes to the SD card. SD cards under lots of constant writing operations tend to die.

Last but not least, I like to learn how these things work.

Advantages

Omni has (what I consider) some advantages over the regular Prometheus + Grafana combo:

  • It uses almost no RAM (13 Mb)
  • It uses almost no CPU
  • It gathers only the information I need
  • All of the information is sent to an InfluxDB instance that could be outside of the cluster. This means that no information is persisted in the Pis, extending their SD card's lifetime.
  • InfluxDB acts as the database and the graph dashboard at the same time, so there is no need to also install Grafana (although you could if you wanted to).

Prerequisites

For Omni to work, you'll need to have a couple of things running first.

InfluxDB

It's a time series database (just like Prometheus) that has nice charts and UI overall.

One of the goals of this project is to avoid constant writing to the SD cards, so you have a few options for the placement of the database:

  1. Use InfluxDB's online service (there is even a free tier https://www.influxdata.com/influxdb-pricing/)
  2. Run an InfluxDB instance in a server outside the Pi cluster (this what I'm doing right now)
  3. If you have better storage in your cluster (like M.2, SSD, etc.) and don't have the SD card limitation, run InfluxDB in the same cluster.

Libraries

You'll need to have the libseccomp2.deb library installed in each of your nodes to avoid a Python error:

Fatal Python Error: pyinit_main: can't initialize time

(more info here)

To install it you can do it in two ways (only one is needed):

  • Ansible: all nodes at the same time

    Edit the file ansible-playbook-libs.yaml in this repo, add your hosts and run:

    ansible-playbook install-libs.yaml
  • SSH: one by one

    Connect into each of your nodes and run:

    wget http://ftp.us.debian.org/debian/pool/main/libs/libseccomp/libseccomp2_2.5.1-1_armhf.deb
    sudo dpkg -i libseccomp2_2.5.1-1_armhf.deb

Once you have it, everything should work ok.

Installation

Before deploying Omni you'll have to specify the attributes of your InfluxDB instance.

  1. Open omni-install.yaml and fill the variables with your InfluxDB instance information.

    NOTE: The attribute OMNI_DATA_RATE_SECONDS specifies the number of seconds between data reporting events that are sent to the InfluxDB server.

  2. Check that everything is running as expected:

kubectl get all -n omni-system

And you are done! 🎉

Contributions

Pull requests with improvements and new features are more than welcome.

Owner
Matias Godoy
Jack of all trades, master of none
Matias Godoy
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022