Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Related tags

Deep Learningacosp
Overview

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Introduction

ACoSP is an online pruning algorithm that compresses convolutional neural networks during training. It learns to select a subset of channels from convolutional layers through a sigmoid function, as shown in the figure. For each channel a w_i is used to scale activations.

ACoSP selection scheme.

The segmentation maps display compressed PSPNet-50 models trained on Cityscapes. The models are up to 16 times smaller.

Repository

This repository is a PyTorch implementation of ACoSP based on hszhao/semseg. It was used to run all experiments used for the publication and is meant to guarantee reproducibility and audibility of our results.

The training, test and configuration infrastructure is kept close to semseg, with only some minor modifications to enable more reproducibility and integrate our pruning code. The model/ package contains the PSPNet50 and SegNet model definitions. In acosp/ all code required to prune during training is defined.

The current configs expect a special folder structure (but can be easily adapted):

  • /data: Datasets, Pretrained-weights
  • /logs/exp: Folder to store experiments

Installation

  1. Clone the repository:

    git clone [email protected]:merantix/acosp.git
  2. Install ACoSP including requirements:

    pip install .

Using ACoSP

The implementation of ACoSP is encapsulated in /acosp and using it independent of all other experimentation code is quite straight forward.

  1. Create a pruner and adapt the model:
from acosp.pruner import SoftTopKPruner
import acosp.inject

# Create pruner object
pruner = SoftTopKPruner(
    starting_epoch=0,
    ending_epoch=100,  # Pruning duration
    final_sparsity=0.5,  # Final sparsity
)
# Add sigmoid soft k masks to model
pruner.configure_model(model)
  1. In your training loop update the temperature of all masking layers:
# Update the temperature in all masking layers
pruner.update_mask_layers(model, epoch)
  1. Convert the soft pruning to hard pruning when ending_epoch is reached:
if epoch == pruner.ending_epoch:
    # Convert to binary channel mask
    acosp.inject.soft_to_hard_k(model)

Experiments

  1. Highlight:

    • All initialization models, trained models are available. The structure is:
      | init/  # initial models
      | exp/
      |-- ade20k/  # ade20k/camvid/cityscapes/voc2012/cifar10
      | |-- pspnet50_{SPARSITY}/  # the sparsity refers to the relative amount of weights that are removed. I.e. sparsity=0.75 <==> compression_ratio=4 
      |   |-- model # model files
      |   |-- ... # config/train/test files
      |-- evals/  # all result with class wise IoU/Acc
      
  2. Hardware Requirements: At least 60GB (PSPNet50) / 16GB (SegNet) of GPU RAM. Can be distributed to multiple GPUs.

  3. Train:

    • Download related datasets and symlink the paths to them as follows (you can alternatively modify the relevant paths specified in folder config):

      mkdir -p /
      ln -s /path_to_ade20k_dataset /data/ade20k
      
    • Download ImageNet pre-trained models and put them under folder /data for weight initialization. Remember to use the right dataset format detailed in FAQ.md.

    • Specify the gpu used in config then do training. (Training using acosp have only been carried out on a single GPU. And not been tested with DDP). The general structure to access individual configs is as follows:

      sh tool/train.sh ${DATASET} ${CONFIG_NAME_WITHOUT_DATASET}

      E.g. to train a PSPNet50 on the ade20k dataset and use the config `config/ade20k/ade20k_pspnet50.yaml', execute:

      sh tool/train.sh ade20k pspnet50
  4. Test:

    • Download trained segmentation models and put them under folder specified in config or modify the specified paths.

    • For full testing (get listed performance):

      sh tool/test.sh ade20k pspnet50
  5. Visualization: tensorboardX incorporated for better visualization.

    tensorboard --logdir=/logs/exp/ade20k
  6. Other:

    • Resources: GoogleDrive LINK contains shared models, visual predictions and data lists.
    • Models: ImageNet pre-trained models and trained segmentation models can be accessed. Note that our ImageNet pretrained models are slightly different from original ResNet implementation in the beginning part.
    • Predictions: Visual predictions of several models can be accessed.
    • Datasets: attributes (names and colors) are in folder dataset and some sample lists can be accessed.
    • Some FAQs: FAQ.md.

Performance

Description: mIoU/mAcc stands for mean IoU, mean accuracy of each class and all pixel accuracy respectively. General parameters cross different datasets are listed below:

  • Network: {NETWORK} @ ACoSP-{COMPRESSION_RATIO}
  • Train Parameters: sync_bn(True), scale_min(0.5), scale_max(2.0), rotate_min(-10), rotate_max(10), zoom_factor(8), aux_weight(0.4), base_lr(1e-2), power(0.9), momentum(0.9), weight_decay(1e-4).
  • Test Parameters: ignore_label(255).
  1. ADE20K: Train Parameters: classes(150), train_h(473), train_w(473), epochs(100). Test Parameters: classes(150), test_h(473), test_w(473), base_size(512).

    • Setting: train on train (20210 images) set and test on val (2000 images) set.
    Network mIoU/mAcc
    PSPNet50 41.42/51.48
    PSPNet50 @ ACoSP-2 38.97/49.56
    PSPNet50 @ ACoSP-4 33.67/43.17
    PSPNet50 @ ACoSP-8 28.04/35.60
    PSPNet50 @ ACoSP-16 19.39/25.52
  2. PASCAL VOC 2012: Train Parameters: classes(21), train_h(473), train_w(473), epochs(50). Test Parameters: classes(21), test_h(473), test_w(473), base_size(512).

    • Setting: train on train_aug (10582 images) set and test on val (1449 images) set.
    Network mIoU/mAcc
    PSPNet50 77.30/85.27
    PSPNet50 @ ACoSP-2 72.71/81.87
    PSPNet50 @ ACoSP-4 65.84/77.12
    PSPNet50 @ ACoSP-8 58.26/69.65
    PSPNet50 @ ACoSP-16 48.06/58.83
  3. Cityscapes: Train Parameters: classes(19), train_h(713/512 -PSP/SegNet), train_h(713/1024 -PSP/SegNet), epochs(200). Test Parameters: classes(19), train_h(713/512 -PSP/SegNet), train_h(713/1024 -PSP/SegNet), base_size(2048).

    • Setting: train on fine_train (2975 images) set and test on fine_val (500 images) set.
    Network mIoU/mAcc
    PSPNet50 77.35/84.27
    PSPNet50 @ ACoSP-2 74.11/81.73
    PSPNet50 @ ACoSP-4 71.50/79.40
    PSPNet50 @ ACoSP-8 66.06/74.33
    PSPNet50 @ ACoSP-16 59.49/67.74
    SegNet 65.12/73.85
    SegNet @ ACoSP-2 64.62/73.19
    SegNet @ ACoSP-4 60.77/69.57
    SegNet @ ACoSP-8 54.34/62.48
    SegNet @ ACoSP-16 44.12/50.87
  4. CamVid: Train Parameters: classes(11), train_h(360), train_w(720), epochs(450). Test Parameters: classes(11), test_h(360), test_w(720), base_size(360).

    • Setting: train on train (367 images) set and test on test (233 images) set.
    Network mIoU/mAcc
    SegNet 55.49+-0.85/65.44+-1.01
    SegNet @ ACoSP-2 51.85+-0.83/61.86+-0.85
    SegNet @ ACoSP-4 50.10+-1.11/59.79+-1.49
    SegNet @ ACoSP-8 47.25+-1.18/56.87+-1.10
    SegNet @ ACoSP-16 42.27+-1.95/51.25+-2.02
  5. Cifar10: Train Parameters: classes(10), train_h(32), train_w(32), epochs(50). Test Parameters: classes(10), test_h(32), test_w(32), base_size(32).

    • Setting: train on train (50000 images) set and test on test (10000 images) set.
    Network mAcc
    ResNet18 89.68
    ResNet18 @ ACoSP-2 88.50
    ResNet18 @ ACoSP-4 86.21
    ResNet18 @ ACoSP-8 81.06
    ResNet18 @ ACoSP-16 76.81

Citation

If you find the acosp/ code or trained models useful, please consider citing:

For the general training code, please also consider referencing hszhao/semseg.

Question

Some FAQ.md collected. You are welcome to send pull requests or give some advices. Contact information: at.

Owner
Merantix
Merantix
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019