Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Overview

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Setting up a python environment

  • Follow the instruction in https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html for downloading and installing Miniconda

  • Open a terminal in the code directory

  • Create an environment using the .yml file:

    conda env create -f deepsatmodels_env.yml

  • Activate the environment:

    source activate deepsatmodels

  • Install required version of torch:

    conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch-nightly

Datasets

MTLCC dataset (Germany)

Download the dataset (.tfrecords)

The data for Germany can be downloaded from: https://github.com/TUM-LMF/MTLCC

  • clone the repository in a separate directory:

    git clone https://github.com/TUM-LMF/MTLCC

  • move to the MTLCC root directory:

    cd MTLCC

  • download the data (40 Gb):

    bash download.sh full

Transform the dataset (.tfrecords -> .pkl)

  • go to the "CSCL_code" home directory:

    cd <.../CSCL_code>

  • activate the "cssl" python environment:

    conda activate cscl

  • add "CSCL_code" home directory to PYTHONPATH:

    export PYTHONPATH="<.../CSCL_code>:$PYTHONPATH"

  • Run the "data/MTLCC/make_pkl_dataset.py" script. Parameter numworkers defines the number of parallel processes employed:

    python data/MTLCC/make_pkl_dataset.py --rootdir <.../MTLCC> --numworkers

  • Running the above script will have the following effects:

    • will create a paths file for the tfrecords files in ".../MTLCC/data_IJGI18/datasets/full/tfrecords240_paths.csv"
    • will create a new directory to save data ".../MTLCC/data_IJGI18/datasets/full/240pkl"
    • will save data in ".../MTLCC/data_IJGI18/datasets/full/240pkl/ "
    • will save relative paths for all data, train data, eval data in ".../MTLCC/data_IJGI18/datasets/full/240pkl"

T31TFM_1618 dataset (France)

Download the dataset

The T31TFM_1618 dataset can be downloaded from Google drive here. Unzipping will create the following folder tree.

T31TFM_1618
├── 2016
│   ├── pkl_timeseries
│       ├── W799943_N6568107_E827372_S6540681
│       |   └── 6541426_800224_2016.pickle
|       |   └── ...
|       ├── ...
├── 2017
│   ├── pkl_timeseries
│       ├── W854602_N6650582_E882428_S6622759
│       |   └── 6623702_854602_2017.pickle
|       |   └── ...
|       ├── ...
├── 2018
│   ├── pkl_timeseries
│       ├── W882228_N6595532_E909657_S6568107
│       |   └── 6568846_888751_2018.pickle
|       |   └── ...
|       ├── ...
├── deepsatdata
|   └── T31TFM_16_products.csv
|   └── ...
|   └── T31TFM_16_parcels.csv
|   └── ...
└── paths
    └── train_paths.csv
    └── eval_paths.csv

Recreate the dataset from scratch

To recreate the dataset use the DeepSatData data generation pipeline.

  • Clone and move to the DeepSatData base directory
git clone https://github.com/michaeltrs/DeepSatData
cd .../DeepSatData
  • Download the Sentinel-2 products.
sh download/download.sh .../T31TFM_16_parcels.csv,.../T31TFM_17_parcels.csv,.../T31TFM_18_parcels.csv
  • Generate a labelled dataset (use case 1) for each year.
sh dataset/labelled_dense/make_labelled_dataset.sh ground_truths_file=<1:ground_truths_file> products_dir=<2:products_dir> labels_dir=<3:labels_dir> windows_dir=<4:windows_dir> timeseries_dir=<5:timeseries_dir> 
res=<6:res> sample_size=<7:sample_size> num_processes<8:num_processes> bands=<8:bands (optional)>

Experiments

Initial steps

  • Add the base directory and paths to train and evaluation path files in "data/datasets.yaml".

  • For each experiment we use a separate ".yaml" configuration file. Examples files are providedided in "configs". The default values filled in these files correspond to parameters used in the experiments presented in the paper.

  • activate "deepsatmodels" python environment:

    conda activate deepsatmodels

Model training

Modify respective .yaml config files accordingly to define the save directory or loading a pre-trained model from pre-trained checkpoints.

Randomly initialized "UNet3D" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet3D.yaml --gpu_ids 0,1`

Randomly initialized "UNet2D-CLSTM" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet2D_CLSTM.yaml --gpu_ids 0,1`

CSCL-pretrained "UNet2D-CLSTM" model

  • model pre-training

     python train_and_eval/segmentation_cscl_training.py --config_file configs/**/UNet2D_CLSTM_CSCL.yaml --gpu_ids 0,1
  • copy the path to the pre-training save directory in CHECKPOINT.load_from_checkpoint. This will load the latest saved model. To load a specific checkpoint copy the path to the .pth file

     python train_and_eval/segmentation_training.py --config_file configs/**/UNet2D_CLSTM.yaml --gpu_ids 0,1

Randomly initialized "UNet3Df" model

`python train_and_eval/segmentation_training.py --config_file configs/**/UNet3Df.yaml --gpu_ids 0,1`

CSCL-pretrained "UNet3Df" model

  • model pre-training

     python train_and_eval/segmentation_cscl_training.py --config_file configs/**/UNet3Df_CSCL.yaml --gpu_ids 0,1
  • copy the path to the pre-training save directory in CHECKPOINT.load_from_checkpoint. This will load the latest saved model. To load a specific checkpoint copy the path to the .pth file

     python train_and_eval/segmentation_training.py --config_file configs/**/UNet3Df.yaml --gpu_ids 0,1
Owner
Michael Tarasiou
Michael Tarasiou
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022