Workshop for student hackathons focused on IoT dev

Overview

Scenario: The Mutt Matcher (IoT version)

According to the World Health Organization there are more than 200 million stray dogs worldwide. The American Society for the Prevention of Cruelty to Animals estimates over 3 million dogs enter their shelters annually - about 6 dogs per minute! Anything that can reduce the time and effort to take in strays can potentially help millions of dogs every year.

Different breeds have different needs, or react differently to people, so when a stray or lost dog is found, identifying the breed can be a great help.

A Raspberry Pi with a camera

Your team has been asked by a fictional animal shelter to build a Mutt Matcher - a device to help determine the breed of a dog when it has been found. This will be an IoT (Internet of Things) device based around a Raspberry Pi with a camera, and will take a photo of the dog, and then use an image classifier Machine learning (ML) model to determine the breed, before uploading the results to a web-based IoT application.

This device will help workers and volunteers to be able to quickly detect the breed and make decisions on the best way to approach and care for the dog.

An application dashboard showing the last detected breed as a German wire pointer, as well as a pie chart of detected breeds

The animal shelter has provided a set of images for a range of dog breeds to get you started. These can be used to train the ML model using a service called Custom Vision.

Pictures of dogs

Prerequisites

Each team member will need an Azure account. With Azure for Students, you can access $100 in free credit, and a large suite of free services!

Your team should be familiar with the following:

Hardware

To complete this workshop fully, ideally you will need a Raspberry Pi (model 3 or 4), and a camera. The camera can be a Raspberry Pi Camera module, or a USB web cam.

💁 If you don't have a Raspberry Pi, you can run this workshop using a PC or Mac to simulate an IoT device, with either a built in or external webcam.

Software

Each member of your team will also need the following software installed:

Resources

A series of resources will be provided to help your team determine the appropriate steps for completion. The resources provided should provide your team with enough information to achieve each goal.

These resources include:

  • Appropriate links to documentation to learn more about the services you are using and how to do common tasks
  • A pre-built application template for the cloud service part of your IoT application
  • Full source code for your IoT device

If you get stuck, you can always ask a mentor for additional help.

Exploring the application

Icons for Custom Vision, IoT Central and Raspberry Pi

The application your team will build will consist of 3 components:

  • An image classifier running in the cloud using Microsoft Custom Vision

  • An IoT application running in the cloud using Azure IoT Central

  • A Raspberry Pi based IoT device with a camera

The application flow described below

When a dog breed needs to be detected:

  1. A button on the IoT application is clicked

  2. The IoT application sends a command to the IoT device to detect the breed

  3. The IoT device captures an image using it's camera

  4. The image is sent to the image classifier ML model in the cloud to detect the breed

  5. The results of the classification are sent back to the IoT device

  6. The detected breed is sent from the IoT device to the IoT application

Goals

Your team will set up the Pi, ML model and IoT application, then connect everything to gether by deploying code to the IoT device.

💁 Each goal below defines what you need to achieve, and points you to relevant on-line resources that will show you how the cloud services or tools work. The aim here is not to provide you with detailed steps to complete the task, but allow you to explore the documentation and learn more about the services as you work out how to complete each goal.

  1. Set up your Raspberry Pi and camera: You will need to set up a clean install of Raspberry Pi OS on your Pi and ensure all the required software is installed.

    💻 If you are using a PC or Mac instead of a Pi, your team will need to set this up instead.

  2. Train your ML model: Your team will need to train the ML model in the cloud using Microsoft Custom Vision. You can train and test this model using the images that have been provided by the animal shelter.

  3. Set up your IoT application: Your team will set up an IoT application in the cloud using IoT Central, an IoT software-as-a-service (SaaS) platform. You will be provided with a pre-built application template to use.

  4. Deploy device code to your Pi: The code for the IoT device needs to be configured and deployed to the Raspberry Pi. You will then be able to test out your application.

    💻 If you are using a PC or Mac instead of a Pi, your team will need to run the device code locally.

💁 The first 3 goals can be worked on concurrently, with different team members working on different steps. Once these 3 are completed, the final step can be worked on by the team.

Validation

This workshop is designed to be a goal-oriented self-exploration of Azure and related technologies. Your team can validate some of the goals using the supplied validation scripts, and instructions are provided where relevant. Your team can then validate the final solution by using the IoT device to take a picture of one of the provided testing images and ensuring the correct result appears in the IoT application.

Where do we go from here?

This project is designed as a potential seed for ideas and future development during your hackathon. Other hack ideas for similar IoT devices that use image classification include:

  • Trash sorting into landfill, recycling, and compost.

  • Identification of disease in plant leaves.

  • Detecting skin cancer by classification of moles.

Improvements you could make to this device include:

  • Adding hardware such as a button to take a photograph, instead of relying on the IoT application.

  • Adding a screen or LCD display to the IoT device to show the breed.

  • Migrating the image classifier to the edge to allow the device to run without connectivity using Azure IoT Edge.

Learn more

You can learn more about using Custom Vision to train image classifiers and object detectors using the following resources:

You can learn more about Azure IoT Central using the following resources:

If you enjoy working with IoT, you can learn more using the following resource:

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Detic ros - A simple ROS wrapper for Detic instance segmentation using pre-trained dataset

Detic ros - A simple ROS wrapper for Detic instance segmentation using pre-trained dataset

Hirokazu Ishida 12 Nov 19, 2022
Cow Feeder is a bot automatically execute trade on cowswap

Cow Feeder is a bot automatically execute trade on cowswap, includes functions: Monitoring Ethereum network gas price and execute trade whe

6 Apr 20, 2022
Hardware: CTWingSKIT_BC28 Development Toolkit

IoT Portal Monitor Tools hardware: CTWingSKIT_BC28 Development Toolkit serial port driver: ST-LINK hardware development environment: Keli 5 MDK IoT pl

Fengming Zhang 1 Nov 07, 2021
ArucoFollow - A script for Robot Operating System and it is a part of a project Robot

ArucoFollow ArucoFollow is a script for Robot Operating System and it is a part

5 Jan 25, 2022
Example code to sending USB Gadget multimedia keys via Python

Send Multimedia USB HID Keys via Python As an USB Gadget in Linux This gives a simple script with zero dependencies that can easily run on any Linux d

DevOps Nirvana 2 Jan 02, 2023
Home Assistant custom components MPK-Lodz

MPK Łódź sensor This sensor uses unofficial API provided by MPK Łódź. Configuration options Key Type Required Default Description name string False MP

Piotr Machowski 3 Nov 01, 2022
This Home Assistant custom component adds support for controlling Midea dehumidiferes on local network.

This is a custom component for Home assistant that adds support for Midea dehumidifier appliances via the local area network. midea-dehumidifier-lan H

Nenad Bogojevic 97 Jan 08, 2023
Robot Framework keyword library wrapper for atlassian-python-api

Robot Framework keyword library wrapper for atlassian-python-api

Marcin Koperski 3 Jul 29, 2022
Home assiatant Custom component: Camera Archiver

Camera archiver Archive your ftp camera meadia files on other ftp with files renaming and event creation. Event can be used for send information to el

1 Jan 06, 2022
Python Keylogger for Linux

A keylogger is a program that records your keystrokes, this program saves them in a .txt file on your local computer and, after 30 seconds (or as long as you want), it will close the .txt file and se

Darío Mazzitelli 4 Jul 31, 2021
DongshanPI Seven for STM32MP157DAC.

STM32MP1 Buildroot External Tree

DongshanPI 14 May 06, 2022
An alternative to Demise-Assistant-Batch made entirely in Python for more capabilities.

Demise-Assistant-Python An alternative to Demise-Assistant-Batch made entirely in Python for more capabilities. IMPORTANT NOTE Demise-Assistant-Batch

SkelOrganisation 1 Nov 24, 2021
SALUS THERMOSTAT Custom component for Home-Assistant

Home-Assistant Custom Components Custom Components for Home-Assistant (http://www.home-assistant.io) Salus Thermostat Climate Component My device is R

21 Dec 18, 2022
Home solar infrastructure (with Peimar Inverter) monitoring based on Raspberry Pi 3 B+ using Grafana, InfluxDB, Custom Python Collector and Shelly EM.

raspberry-solar-mon Home solar infrastructure (with Peimar Inverter) monitoring based on Raspberry Pi 3 B+ using Grafana, InfluxDB, Custom Python Coll

cislow 10 Dec 23, 2022
Open source home automation that puts local control and privacy first.

Home Assistant Open source home automation that puts local control and privacy first. Powered by a worldwide community of tinkerers and DIY enthusiast

Home Assistant 57k Jan 01, 2023
Point Density-Aware Voxels for LiDAR 3D Object Detection (CVPR 2022)

PDV PDV is LiDAR 3D object detection method. This repository is based off [OpenPCDet]. Point Density-Aware Voxels for LiDAR 3D Object Detection Jordan

Toronto Robotics and AI Laboratory 114 Dec 21, 2022
Example Python code for building RPi-controlled robotic systems

RPi Example Code Example Python code for building RPi-controlled robotic systems These python files have been compiled / developed by the Neurobionics

Elliott Rouse 2 Feb 04, 2022
A Python class for controlling the Pimoroni RGB Keypad for Raspberry Pi Pico

rgbkeypad A Python class for controlling the Pimoroni RGB Keypad for the Raspberry Pi Pico. Compatible with MicroPython and CircuitPython. keypad = RG

Martin O'Hanlon 43 Nov 11, 2022
Python apps to assist with Gas Blending

Welcome to DiveTools Gas Blending This tool is for testing and educational use. It is not intended to confirm the mix of breathing gases. If this tool

Tucker 7 Sep 18, 2022
Software framework to enable agile robotic assembly applications.

ConnTact Software framework to enable agile robotic assembly applications. (Connect + Tactile) Overview Installation Development of framework was done

Southwest Research Institute Robotics 29 Dec 01, 2022