[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

Overview

ASSL

This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR), introduced in our NeurIPS 2021 Spotlight paper:

Aligned Structured Sparsity Learning for Efficient Image Super-Resolution [Camera Ready]
Yulun Zhang*, Huan Wang*, Can Qin, and Yun Fu (*Contribute Equally)
Northeastern University, Boston, MA, USA

Stay tuned!

You might also like...
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

PyTorch code for our paper
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

PyTorch code for our ECCV 2018 paper
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Comments
  • Could you share the code with me?

    Could you share the code with me?

    @MingSun-Tse Thanks for your excellent work. I read the paper ,and I want to learn the details. Could you share the paper with me? Thank you very much!!

    opened by ciwei123 3
  • Why simply use the first constrained layer as pruning template for all constrained layers?

    Why simply use the first constrained layer as pruning template for all constrained layers?

    From the observation of training results, the hard mask's weights between the constrained layers are not exactly aligned. https://github.com/MingSun-Tse/ASSL/blob/a564556c8b578c2ee86d135044f088bfeaafc707/src/pruner/utils.py#L71

    opened by yumath 2
  • Questions about implementation detail

    Questions about implementation detail

    hello , I have some questiones about implementation details.

    Data are obtained using the HR-LR data pairs obtained by the down-sampling code provided in BasicSR. The training data was DF2K (900 DIV2K + 2650 Flickr2K), and the test data was Set5.

    I run this command to prune the EDSR_16_256 model to EDSR_16_48. Only the pruning ratio and storage path name are modified compared to the command provided by the official.

    Prune from 256 to 48, pr=0.8125, x2, ASSL

    python main.py --model LEDSR --scale 2 --patch_size 96 --ext sep --dir_data /home/notebook/data/group_cpfs/wurongyuan/data/data
    --data_train DF2K --data_test DF2K --data_range 1-3550/3551-3555 --chop --save_results --n_resblocks 16 --n_feats 256
    --method ASSL --wn --stage_pr [0-1000:0.8125] --skip_layers *mean*,*tail*
    --same_pruned_wg_layers model.head.0,model.body.16,*body.2 --reg_upper_limit 0.5 --reg_granularity_prune 0.0001
    --update_reg_interval 20 --stabilize_reg_interval 43150 --pre_train pretrained_models/LEDSR_F256R16BIX2_DF2K_M311.pt
    --same_pruned_wg_criterion reg --save main/SR/LEDSR_F256R16BIX2_DF2K_ASSL_0.8125_RGP0.0001_RUL0.5_Pretrain_06011101 Results model_just_finished_prune ---> 33.739dB fine-tuning after one epoch ---> 37.781dB fine-tuning after 756 epoch ---> 37.940dB

    The result (37.940dB) I obtained with the code provided by the official is still a certain gap from the result in the paper (38.12dB). I should have overlooked some details.

    I also compared L1-norm method provided in the code. Prune from 256 to 48, pr=0.8125, x2, L1

    python main.py --model LEDSR --scale 2 --patch_size 96 --ext sep --dir_data /home/notebook/data/group_cpfs/wurongyuan/data/data
    --data_train DF2K --data_test DF2K --data_range 1-3550/3551-3555 --chop --save_results --n_resblocks 16 --n_feats 256
    --method L1 --wn --stage_pr [0-1000:0.8125] --skip_layers *mean*,*tail*
    --same_pruned_wg_layers model.head.0,model.body.16,*body.2 --reg_upper_limit 0.5 --reg_granularity_prune 0.0001
    --update_reg_interval 20 --stabilize_reg_interval 43150 --pre_train pretrained_models/LEDSR_F256R16BIX2_DF2K_M311.pt
    --same_pruned_wg_criterion reg --save main/SR/LEDSR_F256R16BIX2_DF2K_L1_0.8125_06011101

    Results

    model_just_finished_prune ---> 13.427dB fine-tuning after one epoch ---> 33.202dB fine-tuning after 756 epoch ---> 37.933dB

    The difference between the results of L1-norm method and those of ASSL seems negligible at this pruning ratio (256->48)

    Is there something I missed? Looking forward to your reply! >-<

    opened by wurongyuan 2
  • Questions on Data Preparation

    Questions on Data Preparation

    Hello and thanks for your amazing work! When I try to reproduce the paper results, I met some trouble binarizing the DF2K data:

    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3548x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3549x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3550x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_HR/3551.pt does not exist. Now making binary...
    Traceback (most recent call last):
    ...
    FileNotFoundError: No such file: '/home/nfs_data/shixiangsheng/projects/ModelCompression/Prune/ASSL/src/data/DF2K/DF2K_train_HR/3551.png'
    

    I created dirs like this: ----data |__DF2K |__DF2K_train_HR |__DF2K_train_LR_bicubic

    I put '0001.png' - '0900.png' from ./data/DIV2K/DIV2K_train_HR and '000001.png' - '002650.png' (renamed to '0901.png' - '3550.png') from .data/Flickr2K/Flickr2K_HR to ./DF2K/DF2K_train_HR. As for downsampled images, I created folders named in ['X2', 'X3', 'X4'] under ./DF2K/DF2K_train_LR_bicubic and copied related images from DIV2K_train_LR_bicubic and Flickr2K_LR_bicubic (with images renamed as '0001x_.png' to '3550x_.png'). At the first and second stages of binarization (binarizing HR images and X4 LR images), it seems OK, but then the above error emerged. It's kind of weird since the total training images are 900 + 2650 and I have no idea why it returned to binarize the HR images after binarizing X4 LR images. I'm new to SR and have tried to look up for data preparation of DF2K in other SR repos, but in vain. I wonder how you actually get DF2K images binarized. Thanks for your help in advance XD

    opened by YouCaiJun98 0
Releases(v0.1)
Owner
Huan Wang
B.E. and M.S. graduate from Zhejiang University, China. Now Ph.D. candidate at Northeastern, USA. I work on interpretable model compression and daydreaming.
Huan Wang
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022