Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Overview

Drone Detection using Thermal Signature

This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight thermal camera. The work is published in the International Conference of Unmanned Air Systems 2021 (ICUAS 2021) and the paper can be read in detail in ICUAS_2021_paper.

Requirements

The following are the requirements with Python 3.7.7

tensorflow==2.4.0
opencv_contrib_python==4.5.1.48
numpy==1.20.3	

Model Architecture

The following diagram highlights the architecture of model based on YOLOV3. However, unlike typical single image object detection, the model takes in the concatenation of a specified number of images in the past relative to the image of interest. This is to encapsulate the motion of the drone as an input feature for detection, a necessity given that thermal signatures of different are generally globular in shape after a certain distance depending on the fidelity of the thermal camera used. Further details can be found in ICUAS_2021_paper.

Model Architecture

Training and Testing

Clone the repository, adjust the training/testing parameters in train.py as shown and execute the code. The training data comprises of data from a controlled indoor environment while the test data contains a mixture data from indoor and outdoor environments.

# Train options
TRAIN_SAVE_BEST_ONLY        = True # saves only best model according validation loss (True recommended)
TRAIN_CLASSES               = "thermographic_data/classes.txt"
TRAIN_NUM_OF_CLASSES        = len(read_class_names(TRAIN_CLASSES))
TRAIN_MODEL_NAME            = "model_2"
TRAIN_ANNOT_PATH            = "thermographic_data/train" 
TRAIN_LOGDIR                = "log" + '/' + TRAIN_MODEL_NAME
TRAIN_CHECKPOINTS_FOLDER    = "checkpoints" + '/' + TRAIN_MODEL_NAME
TRAIN_BATCH_SIZE            = 4
TRAIN_INPUT_SIZE            = 416
TRAIN_FROM_CHECKPOINT       = False # "checkpoints/yolov3_custom"
TRAIN_LR_INIT               = 1e-4
TRAIN_LR_END                = 1e-6
TRAIN_WARMUP_EPOCHS         = 1
TRAIN_EPOCHS                = 10
TRAIN_DECAY                 = 0.8
TRAIN_DECAY_STEPS           = 50.0

# TEST options
TEST_ANNOT_PATH             = "thermographic_data/validate"
TEST_BATCH_SIZE             = 4
TEST_INPUT_SIZE             = 416
TEST_SCORE_THRESHOLD        = 0.3
TEST_IOU_THRESHOLD          = 0.45

Once the model is trained, you can test the model's predictions on images using detect_image.py. Adjust the the following parameters in detect_image.py and execute the code.

CLASSES               = "thermographic_data/classes.txt"
NUM_OF_CLASSES        = len(read_class_names(CLASSES))
MODEL_NAME            = "model_2"
CHECKPOINTS_FOLDER    = "checkpoints" + "/" + MODEL_NAME
ANNOT_PATH            = "thermographic_data/test/images/pr"
OUTPUT_PATH           = 'predicted_images/' + MODEL_NAME + "/pr"
DETECT_BATCH          = False
DETECT_WHOLE_VID      = True
BATCH_SIZE            = 1804
IMAGE_PATH            = ANNOT_PATH + "/free_3/free_3_frame_100"
INPUT_SIZE            = 416
SCORE_THRESHOLD       = 0.8
IOU_THRESHOLD         = 0.45

Similarly, you can test the model's predictions on videos using detect_video.py. Adjust the following parameters in detect_video.py and execute the code.

CLASSES               = "thermographic_data/classes.txt"
NUM_OF_CLASSES        = len(read_class_names(CLASSES))
MODEL_NAME            = "model_2"
CHECKPOINTS_FOLDER    = "checkpoints" + "/" + MODEL_NAME
ANNOT_PATH            = "raw_videos/free_2.mp4"
OUTPUT_PATH           = 'predicted_videos/' + MODEL_NAME 
INPUT_SIZE            = 416
SCORE_THRESHOLD       = 0.8
IOU_THRESHOLD         = 0.45

Examples of predictions

An example of correct drone detection in indoor environment shown below.

Indoor Detection

An example of correct drone detection in outdoor environment shown below.

Outdoor Prediction

Video of model predictions shown in indoor environment can be found here.

Owner
Chong Yu Quan
Chong Yu Quan
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023