UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Related tags

Deep LearningUMT
Overview

Unified Multi-modal Transformers

arXiv License

This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Video Moment Retrieval and Highlight Detection by Ye Liu, Siyuan Li, Yang Wu, Chang Wen Chen, Ying Shan, and Xiaohu Qie, which has been accepted by CVPR 2022.

Installation

Please refer to the following environmental settings that we use. You may install these packages by yourself if you meet any problem during automatic installation.

  • CUDA 11.5.0
  • CUDNN 8.3.2.44
  • Python 3.10.0
  • PyTorch 1.11.0
  • NNCore 0.3.6

Install from source

  1. Clone the repository from GitHub.
git clone https://github.com/TencentARC/UMT.git
cd UMT
  1. Install dependencies.
pip install -r requirements.txt

Getting Started

Download and prepare the datasets

  1. Download and extract the datasets.
  1. Prepare the files in the following structure.
UMT
├── configs
├── datasets
├── models
├── tools
├── data
│   ├── qvhighlights
│   │   ├── *features
│   │   ├── highlight_{train,val,test}_release.jsonl
│   │   └── subs_train.jsonl
│   ├── charades
│   │   ├── *features
│   │   └── charades_sta_{train,test}.txt
│   ├── youtube
│   │   ├── *features
│   │   └── youtube_anno.json
│   └── tvsum
│       ├── *features
│       └── tvsum_anno.json
├── README.md
├── setup.cfg
└── ···

Train a model

Run the following command to train a model using a specified config.

# Single GPU
python tools/launch.py ${path-to-config}

# Multiple GPUs
torchrun --nproc_per_node=${num-gpus} tools/launch.py ${path-to-config}

Test a model and evaluate results

Run the following command to test a model and evaluate results.

python tools/launch.py ${path-to-config} --checkpoint ${path-to-checkpoint} --eval

Pre-train with ASR captions on QVHighlights

Run the following command to pre-train a model using ASR captions on QVHighlights.

torchrun --nproc_per_node=4 tools/launch.py configs/qvhighlights/umt_base_pretrain_100e_asr.py

Model Zoo

We provide multiple pre-trained models and training logs here. All the models are trained with a single NVIDIA Tesla V100-FHHL-16GB GPU and are evaluated using the default metrics of the datasets.

Dataset Model Type MR mAP HD mAP Download
[email protected] [email protected] [email protected] [email protected]
QVHighlights UMT-B 38.59 39.85 model | metrics
UMT-B w/ PT 39.26 40.10 model | metrics
Charades-STA UMT-B V + A 48.31 29.25 88.79 56.08 model | metrics
UMT-B V + O 49.35 26.16 89.41 54.95 model | metrics
YouTube
Highlights
UMT-S Dog 65.93 model | metrics
UMT-S Gymnastics 75.20 model | metrics
UMT-S Parkour 81.64 model | metrics
UMT-S Skating 71.81 model | metrics
UMT-S Skiing 72.27 model | metrics
UMT-S Surfing 82.71 model | metrics
TVSum UMT-S VT 87.54 model | metrics
UMT-S VU 81.51 model | metrics
UMT-S GA 88.22 model | metrics
UMT-S MS 78.81 model | metrics
UMT-S PK 81.42 model | metrics
UMT-S PR 86.96 model | metrics
UMT-S FM 75.96 model | metrics
UMT-S BK 86.89 model | metrics
UMT-S BT 84.42 model | metrics
UMT-S DS 79.63 model | metrics

Here, w/ PT means initializing the model using pre-trained weights on ASR captions. V, A, and O indicate video, audio, and optical flow, respectively.

Citation

If you find this project useful for your research, please kindly cite our paper.

@inproceedings{liu2022umt,
  title={UMT: Unified Multi-modal Transformers for Joint Video Moment Retrieval and Highlight Detection},
  author={Liu, Ye and Li, Siyuan and Wu, Yang and Chen, Chang Wen and Shan, Ying and Qie, Xiaohu},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}
Owner
Applied Research Center (ARC), Tencent PCG
Applied Research Center (ARC), Tencent PCG
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022