Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Overview

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Paper on arXiv

Public PyTorch implementation of two-stage peer-regularized feature recombination for arbitrary image style transfer presented at CVPR 2020. The model is trained on a selected set painters and generalizes well even to previously unseen style during testing.

Structure

The repository contains the code that we have used to produce some of the main results in the paper. We have left out additional modifications that were used to generate the ablation studies, etc.

Running examples

In order to get reasonable runtime, the code has to be run on a GPU. The code is multi-gpu ready. We have used 2 GPUs for training and a single GPU during test time. We have been running our code on a Nvidia Titan X (Pascal) 12GB GPU. Basic system requirements are to be found here.

Should you encounter some issues running the code, please first check Known issues and then consider opening a new issue in this repository.

Model training

The provided pre-trained model was trained by running the following command:

python train.py --dataroot photo2painter13 --checkpoints_dir=./checkpoints --dataset_mode=painters13 --name GanAuxModel --model gan_aux
--netG=resnet_residual --netD=disc_noisy --display_env=GanAuxModel --gpu_ids=0,1 --lambda_gen=1.0 --lambda_disc=1.0 --lambda_cycle=1.0
--lambda_cont=1.0 --lambda_style=1.0 --lambda_idt=25.0 --num_style_samples=1 --batch_size=2 --num_threads=8 --fineSize=256 --loadSize=286
--mapping_mode=one_to_all --knn=5 --ml_margin=1.0 --lr=4e-4 --peer_reg=bidir --print_freq=500 --niter=50 --niter_decay=150 --no_html

Model testing

We provide one pre-trained model that you can run and stylize images. The example below will use sample content and style images from the samples/data folder.

The pretrained model was trained on images with resolution 256 x 256, during test time it can however operate on images of arbitrary size. Current memory limitations restrict us to run images of size up to 768 x 768.

python test.py --checkpoints_dir=./samples/models --name GanAuxPretrained --model gan_aux --netG=resnet_residual --netD=disc_noisy
--gpu_ids=0 --num_style_samples=1 --loadSize=512 --fineSize=512 --knn=5 --peer_reg=bidir --epoch=200 --content_folder content_imgs
--style_folder style_imgs --output_folder out_imgs

Datasets

The full dataset that we have used for training is the same one as in this work.

Results

Comparison to existing approaches

Comparison image

Ablation study

Ablation image

Reference

If you make any use of our code or data, please cite the following:

@conference{svoboda2020twostage,
  title={Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer},
  author={Svoboda, J. and Anoosheh, A. and Osendorfer, Ch. and Masci, J.},
  booktitle={Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}

Acknowledgments

The code in this repository is based on pytorch-CycleGAN.

For any reuse and or redistribution of the code in this repository please follow the license agreement attached to this repository.

Owner
NNAISENSE
NNAISENSE
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022