Shared code for training sentence embeddings with Flax / JAX

Overview

flax-sentence-embeddings

This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pairs.

You can add your code by creating a pull request.

Dataloading

Dowload data

You can download the data using this basic python script at the root of the project. Download should be completed in about 20 minutes given your connection speed. Total size on disk is arround 25G.

python dataset/download_data.py --dataset_list=datasets_list.tsv --data_path=PATH_TO_STORE_DATASETS

Dataloading

First implementation of the dataloader takes as input a single jsonl.gz file. It creates a pointer on the file such that samples are loaded one by one. The implementation is based on torch standard Dataloader and Dataset classes. The class supports num_worker>0 such that data loading is done in a background process on the CPU, i.e. the data is loaded and tokenized in parallel to training the network. This avoid to create a bottleneck from I/O and tokenization. The implementation currently return {'anchor': '...,' 'positive': '...'}

from dataset.dataset import IterableCorpusDataset

corpus_dataset = IterableCorpusDataset(
  file_path=os.path.join(PATH_TO_STORE_DATASETS, 'stackexchange_duplicate_questions_title_title.json.gz'), 
  batch_size=2,
  num_workers=2, 
  transform=None)

corpus_dataset_itr = iter(corpus_dataset)
next(corpus_dataset_itr)

# {'anchor': 'Can anyone explain all these Developer Options?',
#  'positive': 'what is the advantage of using the GPU rendering options in Android?'}

def collate(batch_input_str):
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
    batch = {'anchor': tokenizer.batch_encode_plus([b['anchor'] for b in batch_input_str], pad_to_max_length=True),
             'positive': tokenizer.batch_encode_plus([b['positive'] for b in batch_input_str], pad_to_max_length=True)}
    return batch

corpus_dataloader = DataLoader(
  corpus_dataset,
  batch_size=2,
  num_workers=2,
  collate_fn=collate,
  pin_memory=False,
  drop_last=True,
  shuffle=False)

print(next(iter(corpus_dataloader)))

# {'anchor': {'input_ids': [[101, 4531, 2019, 2523, 2090, 2048, 4725, 1997, 2966, 8830, 1998, 1037, 7142, 8023, 102, 0, 0, 0], [101, 1039, 1001, 10463, 5164, 1061, 2100, 2100, 24335, 26876, 11927, 4779, 4779, 2102, 2000, 3058, 7292, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}, 'positive': {'input_ids': [[101, 1045, 2031, 2182, 2007, 2033, 1010, 2048, 4725, 1997, 8830, 1025, 1037, 3115, 2729, 4118, 1010, 1998, 1037, 17009, 8830, 1012, 2367, 3633, 4374, 2367, 4118, 1010, 2049, 2035, 18154, 11095, 1012, 1045, 2572, 2667, 2000, 2424, 1996, 2523, 1997, 1996, 17009, 8830, 1998, 1037, 1005, 2092, 2108, 3556, 1005, 2029, 2003, 1037, 15973, 3643, 1012, 2054, 2003, 1996, 2190, 2126, 2000, 2424, 2151, 8924, 1029, 1041, 1012, 1043, 1012, 8833, 6553, 26237, 2944, 1029, 102], [101, 1045, 2572, 2667, 2000, 10463, 1037, 5164, 3058, 2046, 1037, 4289, 2005, 29296, 3058, 7292, 1012, 1996, 4289, 2003, 2066, 1024, 1000, 2297, 2692, 20958, 2620, 17134, 19317, 19317, 1000, 1045, 2228, 2023, 1041, 16211, 4570, 2000, 1061, 2100, 2100, 24335, 26876, 11927, 4779, 4779, 2102, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}}

=======

Installation

Poetry

A Poetry toml is provided to manage dependencies in a virtualenv. Check https://python-poetry.org/

Once you've installed poetry, you can connect to virtual env and update dependencies:

poetry shell
poetry update
poetry install

requirements.txt

Someone on your platform should generate it once with following command.

poetry export -f requirements.txt --output requirements.txt

Rust compiler for hugginface tokenizers

  • Hugginface tokenizers require a Rust compiler so install one.

custom libs

  • If you want a specific version of any library, edit the pyproject.toml, add it and/or replace "*" by it.
Owner
Nils Reimers
Nils Reimers
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
Switch spaces for knowledge graph embeddings

SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,

Shuai Zhang 4 Dec 01, 2021
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022