DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

Overview

DatasetGAN

This is the official code and data release for:

DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

Yuxuan Zhang*, Huan Ling*, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela Barriuso, Antonio Torralba, Sanja Fidler

CVPR'21, Oral [paper] [supplementary] [Project Page]

News

  • Benchmark Challenge - A benchmark with diversed testing images is coming soon -- stay tuned!

  • Generated dataset for downstream tasks is coming soon -- stay tuned!

License

For any code dependency related to Stylegan, the license is under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation. To view a copy of this license, visit LICENSE.

The code of DatasetGAN is released under the MIT license. See LICENSE for additional details.

The dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation. You can use, redistribute, and adapt the material for non-commercial purposes, as long as you give appropriate credit by citing our paper and indicating any changes that you've made.

Requirements

  • Python 3.6 or 3.7 are supported.
  • Pytorch 1.4.0 + is recommended.
  • This code is tested with CUDA 10.2 toolkit and CuDNN 7.5.
  • Please check the python package requirement from requirements.txt, and install using
pip install -r requirements.txt

Download Dataset from google drive and put it in the folder of ./datasetGAN/dataset_release. Please be aware that the dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

Download pretrained checkpoint from Stylegan and convert the tensorflow checkpoint to pytorch. Put checkpoints in the folder of ./datasetGAN/dataset_release/stylegan_pretrain. Please be aware that the any code dependency and checkpoint related to Stylegan, the license is under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

Note: a good example of converting stylegan tensorlow checkpoint to pytorch is available this Link.

Training

To reproduce paper DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort:

cd datasetGAN
  1. Run Step1: Interpreter training.
  2. Run Step2: Sampling to generate massive annotation-image dataset.
  3. Run Step3: Train Downstream Task.

1. Interpreter Training

python train_interpreter.py --exp experiments/.json 

Note: Training time for 16 images is around one hour. 160G RAM is required to run 16 images training. One can cache the data returned from prepare_data function to disk but it will increase trianing time due to I/O burden.

Example of annotation schema for Face class. Please refer to paper for other classes.

img

2. Run GAN Sampling

python train_interpreter.py \
--generate_data True --exp experiments/.json  \
--resume [path-to-trained-interpreter in step3] \
--num_sample [num-samples]

To run sampling processes in parallel

sh datasetGAN/script/generate_face_dataset.sh

Example of sampling images and annotation:

img

3. Train Downstream Task

python train_deeplab.py \
--data_path [path-to-generated-dataset in step4] \
--exp experiments/.json

Inference

img

python test_deeplab_cross_validation.py --exp experiments/face_34.json\
--resume [path-to-downstream task checkpoint] --cross_validate True

June 21st Update:

For training interpreter, we change the upsampling method from nearnest upsampling to bilinar upsampling in line and update results in Table 1. The table reports mIOU.

Citations

Please ue the following citation if you use our data or code:

@inproceedings{zhang2021datasetgan,
  title={Datasetgan: Efficient labeled data factory with minimal human effort},
  author={Zhang, Yuxuan and Ling, Huan and Gao, Jun and Yin, Kangxue and Lafleche, Jean-Francois and Barriuso, Adela and Torralba, Antonio and Fidler, Sanja},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10145--10155},
  year={2021}
}
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023