This repository lets you interact with Lean through a REPL.

Related tags

Deep Learninglean-gym
Overview

lean-gym

This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-gym.

Setup

# Download pre-built binaries and build the project (targeting mathlib).
bash ./scripts/setup.sh

Usage

lean --run src/repl.lean

Starts a fresh REPL. Once started, the REPL accepts the following commands:

  • init_search: takes a declaration name as well as a list of open namespaces to initialize a search at the given declaration opening the provided namespaces, and returning the initial tactic state (along with a fresh search_id and tactic_state_id).
  • run_tac: takes a search_id, a tactic_state_id and a tactic to apply at the tactic state denoted by the provided ids.
  • clear_search: takes a search_id to clear all state related to a search.

The commands can be interleaved freely enabling the parallelization of multiple proof searches against the same REPL.

$ lean --run src/repl.lean

["init_search", ["intermediate_field.adjoin.range_algebra_map_subset", "intermediate_field finite_dimensional polynomial"]]
{"error":null,"search_id":"0","tactic_state":"⊢ ∀ (F : Type u_1) [_inst_1 : field F] {E : Type u_2} [_inst_2 : field E] [_inst_3 : algebra F E] (S : set E),\tset.range ⇑(algebra_map F E) ⊆ ↑(intermediate_field.adjoin F S)","tactic_state_id":"0"}

["init_search", ["int.prime.dvd_mul", ""]]
{"error":null,"search_id":"1","tactic_state":"⊢ ∀ {m n : ℤ} {p : ℕ}, nat.prime p → ↑p ∣ m * n → p ∣ m.nat_abs ∨ p ∣ n.nat_abs","tactic_state_id":"0"}

["run_tac",["0","0","intros"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E\t⊢ set.range ⇑(algebra_map F E) ⊆ ↑(intermediate_field.adjoin F S)","tactic_state_id":"1"}

["run_tac",["1","0","intros"]]
{"error":null,"search_id":"1","tactic_state":"m n : ℤ,\tp : ℕ,\thp : nat.prime p,\th : ↑p ∣ m * n\t⊢ p ∣ m.nat_abs ∨ p ∣ n.nat_abs","tactic_state_id":"1"}

["run_tac",["1","1","apply (nat.prime.dvd_mul hp).mp"]]
{"error":null,"search_id":"1","tactic_state":"m n : ℤ,\tp : ℕ,\thp : nat.prime p,\th : ↑p ∣ m * n\t⊢ p ∣ m.nat_abs * n.nat_abs","tactic_state_id":"2"}

["run_tac",["1","2","rw ← int.nat_abs_mul"]]
{"error":null,"search_id":"1","tactic_state":"m n : ℤ,\tp : ℕ,\thp : nat.prime p,\th : ↑p ∣ m * n\t⊢ p ∣ (m * n).nat_abs","tactic_state_id":"3"}

["run_tac",["1","3","simp"]]
{"error":"run_tac_failed: pos=(some ⟨1, 2⟩) msg=simplify tactic failed to simplify","search_id":null,"tactic_state":null,"tactic_state_id":null}

["run_tac",["1","5","exact int.coe_nat_dvd_left.mp h"]]
{"error":"unknown_id: search_id=1 tactic_state_id=5","search_id":null,"tactic_state":null,"tactic_state_id":null}

["run_tac",["1","3","exact int.coe_nat_dvd_left.mp h"]]
{"error":null,"search_id":"1","tactic_state":"no goals","tactic_state_id":"4"}

["clear_search",["1"]]
{"error":null,"search_id":"1","tactic_state":null,"tactic_state_id":null}

["run_tac",["0","1","intros x hx,"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E,\tx : E,\thx : x ∈ set.range ⇑(algebra_map F E)\t⊢ x ∈ ↑(intermediate_field.adjoin F S)","tactic_state_id":"2"}

["run_tac",["0","2","cases hx with f hf"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E,\tx : E,\tf : F,\thf : ⇑(algebra_map F E) f = x\t⊢ x ∈ ↑(intermediate_field.adjoin F S)","tactic_state_id":"3"}

["run_tac",["0","3","rw ← hf"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E,\tx : E,\tf : F,\thf : ⇑(algebra_map F E) f = x\t⊢ ⇑(algebra_map F E) f ∈ ↑(intermediate_field.adjoin F S)","tactic_state_id":"4"}

["run_tac",["0","4","exact adjoin.algebra_map_mem F S f"]]
{"error":null,"search_id":"0","tactic_state":"no goals","tactic_state_id":"5"}

["clear_search",["0"]]
{"error":null,"search_id":"0","tactic_state":null,"tactic_state_id":null}

Declaration names

Declaration names and open namespaces as recorded by lean_proof_recording are available in the data/ directory to be used with the init_search command.

Notes

The REPL is subject to crashes in rare cases. Empirically such crash happens no more than ~0.01% of the time.

When a tactic state is reached with no left goals, some custom logic is run to check that the resulting proof's type matches the top level goal type and does not rely on sorry. We also check for the presence of undefined in the proof term. As an example, the following MiniF2F proofs will safely fail with error proof_validation_failed.

["init_search", ["mathd_algebra_35", ""]]
["run_tac", ["0", "0", "intros"]]
["run_tac", ["0", "1", "sorry"]]
["init_search", ["induction_divisibility_3divnto3m2n", ""]]
["run_tac", ["0", "0", "intros"]]
["run_tac", ["0", "1", "rw [add_comm]"]]
["run_tac", ["0", "2", "have h3 : 1 * (n + 1) ≤ (n + 1)"]]
["run_tac", ["0", "3", "rw one_mul"]]
["run_tac", ["0", "4", "apply dvd_trans"]]
["run_tac", ["0", "5", "swap"]]
["run_tac", ["0", "6", "simp []"]]
["init_search", ["mathd_numbertheory_13", ""]]
["run_tac", ["0", "0", "intros u v hu hv hsum"]]
["run_tac", ["0", "1", "intro h"]]
["run_tac", ["0", "2", "contrapose h"]]
["run_tac", ["0", "3", "intro hn"]]
["run_tac", ["0", "4", "exact not_lt_of_lt hn undefined"]]
Owner
OpenAI
OpenAI
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022