Tree Nested PyTorch Tensor Lib

Overview

DI-treetensor

PyPI PyPI - Python Version Loc Comments

Docs Deploy Code Test Badge Creation Package Release codecov

GitHub stars GitHub forks GitHub commit activity GitHub issues GitHub pulls Contributors GitHub license

treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors.

Almost all the operation can be supported in form of trees in a convenient way to simplify the structure processing when the calculation is tree-based.

Installation

You can simply install it with pip command line from the official PyPI site.

pip install di-treetensor

For more information about installation, you can refer to Installation.

Documentation

The detailed documentation are hosted on https://opendilab.github.io/DI-treetensor.

Only english version is provided now, the chinese documentation is still under development.

Quick Start

You can easily create a tree value object based on FastTreeValue.

import builtins
import os
from functools import partial

import treetensor.torch as torch

print = partial(builtins.print, sep=os.linesep)

if __name__ == '__main__':
    # create a tree tensor
    t = torch.randn({'a': (2, 3), 'b': {'x': (3, 4)}})
    print(t)
    print(torch.randn(4, 5))  # create a normal tensor
    print()

    # structure of tree
    print('Structure of tree')
    print('t.a:', t.a)  # t.a is a native tensor
    print('t.b:', t.b)  # t.b is a tree tensor
    print('t.b.x', t.b.x)  # t.b.x is a native tensor
    print()

    # math calculations
    print('Math calculation')
    print('t ** 2:', t ** 2)
    print('torch.sin(t).cos()', torch.sin(t).cos())
    print()

    # backward calculation
    print('Backward calculation')
    t.requires_grad_(True)
    t.std().arctan().backward()
    print('grad of t:', t.grad)
    print()

    # native operation
    # all the ops can be used as the original usage of `torch`
    print('Native operation')
    print('torch.sin(t.a)', torch.sin(t.a))  # sin of native tensor

The result should be

<Tensor 0x7f0dae602760>
├── a --> tensor([[-1.2672, -1.5817, -0.3141],
│                 [ 1.8107, -0.1023,  0.0940]])
└── b --> <Tensor 0x7f0dae602820>
    └── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
                      [ 1.5956,  0.8825, -0.5702, -0.2247],
                      [ 0.9235,  0.4538,  0.8775, -0.2642]])

tensor([[-0.9559,  0.7684,  0.2682, -0.6419,  0.8637],
        [ 0.9526,  0.2927, -0.0591,  1.2804, -0.2455],
        [ 0.4699, -0.9998,  0.6324, -0.6885,  1.1488],
        [ 0.8920,  0.4401, -0.7785,  0.5931,  0.0435]])

Structure of tree
t.a:
tensor([[-1.2672, -1.5817, -0.3141],
        [ 1.8107, -0.1023,  0.0940]])
t.b:
<Tensor 0x7f0dae602820>
└── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
                  [ 1.5956,  0.8825, -0.5702, -0.2247],
                  [ 0.9235,  0.4538,  0.8775, -0.2642]])

t.b.x
tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
        [ 1.5956,  0.8825, -0.5702, -0.2247],
        [ 0.9235,  0.4538,  0.8775, -0.2642]])

Math calculation
t ** 2:
<Tensor 0x7f0dae602eb0>
├── a --> tensor([[1.6057, 2.5018, 0.0986],
│                 [3.2786, 0.0105, 0.0088]])
└── b --> <Tensor 0x7f0dae60c040>
    └── x --> tensor([[1.4943, 0.1187, 0.9960, 0.1669],
                      [2.5458, 0.7789, 0.3252, 0.0505],
                      [0.8528, 0.2059, 0.7699, 0.0698]])

torch.sin(t).cos()
<Tensor 0x7f0dae621910>
├── a --> tensor([[0.5782, 0.5404, 0.9527],
│                 [0.5642, 0.9948, 0.9956]])
└── b --> <Tensor 0x7f0dae6216a0>
    └── x --> tensor([[0.5898, 0.9435, 0.6672, 0.9221],
                      [0.5406, 0.7163, 0.8578, 0.9753],
                      [0.6983, 0.9054, 0.7185, 0.9661]])


Backward calculation
grad of t:
<Tensor 0x7f0dae60c400>
├── a --> tensor([[-0.0435, -0.0535, -0.0131],
│                 [ 0.0545, -0.0064, -0.0002]])
└── b --> <Tensor 0x7f0dae60cbe0>
    └── x --> tensor([[ 0.0357, -0.0141, -0.0349, -0.0162],
                      [ 0.0476,  0.0249, -0.0213, -0.0103],
                      [ 0.0262,  0.0113,  0.0248, -0.0116]])


Native operation
torch.sin(t.a)
tensor([[-0.9543, -0.9999, -0.3089],
        [ 0.9714, -0.1021,  0.0939]], grad_fn=<SinBackward>)

For more quick start explanation and further usage, take a look at:

Extension

If you need to translate treevalue object to runnable source code, you may use the potc-treevalue plugin with the installation command below

pip install DI-treetensor[potc]

In potc, you can translate the objects to runnable python source code, which can be loaded to objects afterwards by the python interpreter, like the following graph

potc_system

For more information, you can refer to

Contribution

We appreciate all contributions to improve DI-treetensor, both logic and system designs. Please refer to CONTRIBUTING.md for more guides.

And users can join our slack communication channel, or contact the core developer HansBug for more detailed discussion.

License

DI-treetensor released under the Apache 2.0 license.

You might also like...
 Pretty Tensor - Fluent Neural Networks in TensorFlow
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

 (Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Code to reproduce the results in the paper
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility functions that allow writing model-based RL algorithms with only a few lines of code.

OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

Comments
  • PyTorch OP List(P0)

    PyTorch OP List(P0)

    reference: https://pytorch.org/docs/1.8.0/torch.html

    common

    • [x] numel
    • [x] cpu
    • [x] cuda
    • [x] to

    Creation Ops

    • [x] torch.zeros_like
    • [x] torch.randn_like
    • [x] torch.randint_like
    • [x] torch.ones_like
    • [x] torch.full_like
    • [x] torch.empty_like
    • [x] torch.zeros
    • [x] torch.randn
    • [x] torch.randint
    • [x] torch.ones
    • [x] torch.full
    • [x] torch.empty

    Indexing, Slicing, Joining, Mutating Ops

    • [x] cat
    • [x] chunk
    • [ ] gather
    • [x] index_select
    • [x] masked_select
    • [x] reshape
    • [ ] scatter
    • [x] split
    • [x] squeeze
    • [x] stack
    • [ ] tile
    • [ ] unbind
    • [x] unsqueeze
    • [x] where

    Math Ops

    Pointwise Ops
    • [x] add
    • [x] sub
    • [x] mul
    • [x] div
    • [x] pow
    • [x] neg
    • [x] abs
    • [x] sign
    • [x] floor
    • [x] ceil
    • [x] round
    • [x] sigmoid
    • [x] clamp
    • [x] exp
    • [x] exp2
    • [x] sqrt
    • [x] log
    • [x] log10
    • [x] log2
    Reduction Ops
    • [ ] argmax
    • [ ] argmin
    • [x] all
    • [x] any
    • [x] max
    • [x] min
    • [x] dist
    • [ ] logsumexp
    • [x] mean
    • [ ] median
    • [x] norm
    • [ ] prod
    • [x] std
    • [x] sum
    • [ ] unique
    Comparison Ops
    • [ ] argsort
    • [x] eq
    • [x] ge
    • [x] gt
    • [x] isfinite
    • [x] isinf
    • [x] isnan
    • [x] le
    • [x] lt
    • [x] ne
    • [ ] sort
    • [ ] topk
    Other Ops
    • [ ] cdist
    • [x] clone
    • [ ] flip

    BLAS and LAPACK Ops

    • [ ] addbmm
    • [ ] addmm
    • [ ] bmm
    • [x] dot
    • [x] matmul
    • [x] mm
    enhancement 
    opened by PaParaZz1 3
  • PyTorch OP Doc List

    PyTorch OP Doc List

    P0

    • [x] cpu
    • [x] cuda
    • [x] to
    • [x] torch.zeros_like
    • [x] torch.randn_like
    • [x] torch.ones_like
    • [x] torch.zeros
    • [x] torch.randn
    • [x] torch.randint
    • [x] torch.ones
    • [x] cat
    • [x] reshape
    • [x] split
    • [x] squeeze
    • [x] stack
    • [x] unsqueeze
    • [x] where
    • [x] abs
    • [x] add
    • [x] clamp
    • [x] div
    • [x] exp
    • [x] log
    • [x] sqrt
    • [x] sub
    • [x] sigmoid
    • [x] pow
    • [x] mul
    • [ ] argmax
    • [ ] argmin
    • [x] all
    • [x] any
    • [x] max
    • [x] min
    • [x] dist
    • [x] mean
    • [x] std
    • [x] sum
    • [x] eq
    • [x] ge
    • [x] gt
    • [x] le
    • [x] lt
    • [x] ne
    • [x] clone
    • [x] dot
    • [x] matmul
    • [x] mm

    P1

    • [x] numel
    • [x] torch.randint_like
    • [x] torch.full_like
    • [x] torch.empty_like
    • [x] torch.full
    • [x] torch.empty
    • [x] chunk
    • [ ] gather
    • [x] index_select
    • [x] masked_select
    • [ ] scatter
    • [ ] tile
    • [ ] unbind
    • [x] ceil
    • [x] exp2
    • [x] floor
    • [x] log10
    • [x] log2
    • [x] neg
    • [x] round
    • [x] sign
    • [ ] bmm

    P2

    • [ ] logsumexp
    • [ ] median
    • [x] norm
    • [ ] prod
    • [ ] unique
    • [ ] argsort
    • [x] isfinite
    • [x] isinf
    • [x] isnan
    • [ ] sort
    • [ ] topk
    • [ ] cdist
    • [ ] flip
    • [ ] addbmm
    • [ ] addmm
    opened by PaParaZz1 2
  • dev(hansbug): add stream support for paralleling the calculations in tree

    dev(hansbug): add stream support for paralleling the calculations in tree

    Here is an example:

    import time
    
    import numpy as np
    import torch
    
    import treetensor.torch as ttorch
    
    N, M, T = 200, 2, 50
    S1, S2, S3 = 512, 1024, 2048
    
    
    def test_min():
        a = ttorch.randn({f'a{i}': (S1, S2) for i in range(N // M)}, device='cuda')
        b = ttorch.randn({f'a{i}': (S2, S3) for i in range(N // M)}, device='cuda')
    
        result = []
        for i in range(T):
            _start_time = time.time()
    
            _ = ttorch.matmul(a, b)
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def test_native():
        a = {f'a{i}': torch.randn(S1, S2, device='cuda') for i in range(N)}
        b = {f'a{i}': torch.randn(S2, S3, device='cuda') for i in range(N)}
    
        result = []
        for i in range(T):
            _start_time = time.time()
    
            for key in a.keys():
                _ = torch.matmul(a[key], b[key])
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def test_linear():
        a = ttorch.randn({f'a{i}': (S1, S2) for i in range(N)}, device='cuda')
        b = ttorch.randn({f'a{i}': (S2, S3) for i in range(N)}, device='cuda')
    
        result = []
        for i in range(T):
            _start_time = time.time()
    
            _ = ttorch.matmul(a, b)
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def test_stream():
        a = ttorch.randn({f'a{i}': (S1, S2) for i in range(N)}, device='cuda')
        b = ttorch.randn({f'a{i}': (S2, S3) for i in range(N)}, device='cuda')
    
        ttorch.stream(M)
        result = []
        for i in range(T):
            _start_time = time.time()
    
            _ = ttorch.matmul(a, b)
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def warmup():
        # warm up
        a = torch.randn(1024, 1024).cuda()
        b = torch.randn(1024, 1024).cuda()
        for _ in range(20):
            c = torch.matmul(a, b)
    
    
    if __name__ == '__main__':
        warmup()
        test_min()
        test_native()
        test_linear()
        test_stream()
    
    

    不过讲真,这个stream实际效果挺脆弱的,非常看tensor尺寸,大了小了都不行,GPU性能不够也不行,一弄不好还容易负优化,总之挺难伺候的。这部分如果想实用化的话得再研究研究。

    enhancement 
    opened by HansBug 1
  • Failure when try to convert between numpy and torch on Windows Python3.10

    Failure when try to convert between numpy and torch on Windows Python3.10

    See here: https://github.com/opendilab/DI-treetensor/runs/7820313811?check_suite_focus=true

    The bug is like

        @method_treelize(return_type=_get_tensor_class)
        def tensor(self: numpy.ndarray, *args, **kwargs):
    >       tensor_: torch.Tensor = torch.from_numpy(self)
    E       RuntimeError: Numpy is not available
    

    The only way I found to 'solve' this is to downgrade python to version3.9 to lower. So these tests will be skipped temporarily.

    bug 
    opened by HansBug 0
Releases(v0.4.0)
  • v0.4.0(Aug 14, 2022)

    What's Changed

    • dev(hansbug): remove support for py3.6 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/12
    • pytorch upgrade to 1.12 by @zjowowen in https://github.com/opendilab/DI-treetensor/pull/11
    • dev(hansbug): add test for torch1.12.0 and python3.10 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/13
    • dev(hansbug): add stream support for paralleling the calculations in tree by @HansBug in https://github.com/opendilab/DI-treetensor/pull/10

    New Contributors

    • @zjowowen made their first contribution in https://github.com/opendilab/DI-treetensor/pull/11

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.3.0...v0.4.0

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Jul 15, 2022)

    What's Changed

    • dev(hansbug): use newer version of treevalue 1.4.1 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/9

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.2.1...v0.3.0

    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Mar 22, 2022)

    What's Changed

    • fix(hansbug): fix uncompitable problem with walk by @HansBug in https://github.com/opendilab/DI-treetensor/pull/5
    • dev(hansbug): add tensor method for treetensor.numpy.ndarray by @HansBug in https://github.com/opendilab/DI-treetensor/pull/6
    • fix(hansbug): add subside support to all the functions. by @HansBug in https://github.com/opendilab/DI-treetensor/pull/7
    • doc(hansbug): add documentation for np.stack, np.split and other 3 functions. by @HansBug in https://github.com/opendilab/DI-treetensor/pull/8
    • release(hansbug): use version 0.2.1 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/4

    New Contributors

    • @HansBug made their first contribution in https://github.com/opendilab/DI-treetensor/pull/5

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.2.0...v0.2.1

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jan 4, 2022)

    • Use newer version of treevalue>=1.2.0
    • Add support of torch 1.10.0
    • Add support of potc

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.1.0...v0.2.0

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Dec 26, 2021)

  • v0.0.1(Sep 30, 2021)

Owner
OpenDILab
Open sourced Decision Intelligence (DI)
OpenDILab
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022