pandas, scikit-learn, xgboost and seaborn integration

Overview

pandas-ml

Latest Docs https://travis-ci.org/pandas-ml/pandas-ml.svg?branch=master

Overview

pandas, scikit-learn and xgboost integration.

Installation

$ pip install pandas_ml

Documentation

http://pandas-ml.readthedocs.org/en/stable/

Example

>>> import pandas_ml as pdml
>>> import sklearn.datasets as datasets

# create ModelFrame instance from sklearn.datasets
>>> df = pdml.ModelFrame(datasets.load_digits())
>>> type(df)
<class 'pandas_ml.core.frame.ModelFrame'>

# binarize data (features), not touching target
>>> df.data = df.data.preprocessing.binarize()
>>> df.head()
   .target  0  1  2  3  4  5  6  7  8 ...  54  55  56  57  58  59  60  61  62  63
0        0  0  0  1  1  1  1  0  0  0 ...   0   0   0   0   1   1   1   0   0   0
1        1  0  0  0  1  1  1  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
2        2  0  0  0  1  1  1  0  0  0 ...   1   0   0   0   0   1   1   1   1   0
3        3  0  0  1  1  1  1  0  0  0 ...   1   0   0   0   1   1   1   1   0   0
4        4  0  0  0  1  1  0  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
[5 rows x 65 columns]

# split to training and test data
>>> train_df, test_df = df.model_selection.train_test_split()

# create estimator (accessor is mapped to sklearn namespace)
>>> estimator = df.svm.LinearSVC()

# fit to training data
>>> train_df.fit(estimator)

# predict test data
>>> test_df.predict(estimator)
0     4
1     2
2     7
...
448    5
449    8
Length: 450, dtype: int64

# Evaluate the result
>>> test_df.metrics.confusion_matrix()
Predicted   0   1   2   3   4   5   6   7   8   9
Target
0          52   0   0   0   0   0   0   0   0   0
1           0  37   1   0   0   1   0   0   3   3
2           0   2  48   1   0   0   0   1   1   0
3           1   1   0  44   0   1   0   0   3   1
4           1   0   0   0  43   0   1   0   0   0
5           0   1   0   0   0  39   0   0   0   0
6           0   1   0   0   1   0  35   0   0   0
7           0   0   0   0   2   0   0  42   1   0
8           0   2   1   0   1   0   0   0  33   1
9           0   2   1   2   0   0   0   0   1  38

Supported Packages

  • scikit-learn
  • patsy
  • xgboost
Comments
  • Fixed imports of deprecated modules which were removed in pandas 0.24.0

    Fixed imports of deprecated modules which were removed in pandas 0.24.0

    Certain functions were deprecated in a previous version of pandas and moved to a different module (see #117). This PR fixes the imports of those functions.

    opened by kristofve 8
  • REL: v0.4.0

    REL: v0.4.0

    • [x] Compat/test for sklearn 0.18.0 (#81)
      • [x] initial fix (#81)
      • [x] wrapper for cross validation classes (re-enable skipped tests) (#85)
      • [x] tests for multioutput (#86)
      • [x] Update doc
    • [x] Compat/test for pandas 0.19.0 (#83)
    • [x] Update release note (#88)
    opened by sinhrks 4
  • Importation error

    Importation error

    I tried to import pandas_ml but it gave the error :

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    I'm running python3.8.1 and I installed pandas_ml via pip (version 20.0.2)

    I dig in the code, error is l.80 of file series.py

    @Appender(pd.core.generic.NDFrame.groupby.__doc__)

    Here pandas is imported at the top of the file with a classic import pandas as pd

    I guess there is a problem with the versions...

    Thanks in advance for any help

    opened by ierezell 2
  • Confusion Matrix no accessible

    Confusion Matrix no accessible

    Hi,

    I've been using confusion_matrix since it was an independent package. I've installed pandas_ml to continue using the package, but it seems that the setup.py script does not install the package.

    Could it be an issue with the find_packages function?

    opened by mmartinortiz 2
  • Seaborn Scatterplot matrix / pairplot integration

    Seaborn Scatterplot matrix / pairplot integration

    import seaborn as sns
    sns.set()
    
    df = sns.load_dataset("iris")
    sns.pairplot(df, hue="species")
    

    displays

    iris_scatter_matrix

    but pairplot doesn't work the same way with ModelFrame

    import pandas as pd
    pd.set_option('max_rows', 10)
    import sklearn.datasets as datasets
    import pandas_ml as pdml  # https://github.com/pandas-ml/pandas-ml
    import seaborn as sns
    import matplotlib.pyplot as plt
    df = pdml.ModelFrame(datasets.load_iris())
    sns.pairplot(df, hue=".target")
    

    iris_modelframe

    There is some useless subplots

    opened by scls19fr 2
  • Error while running train.py from speech commands in tensorflow examples.

    Error while running train.py from speech commands in tensorflow examples.

    Have the following error: File "train.py", line 27, in <module> from callbacks import ConfusionMatrixCallback File "/home/tesseract/ayush_workspace/NLP/WakeWord/tensorflow_trainer/ml/callbacks.py", line 21, in <module> from pandas_ml import ConfusionMatrix File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/__init__.py", line 3, in <module> from pandas_ml.core import ModelFrame, ModelSeries # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/__init__.py", line 3, in <module> from pandas_ml.core.frame import ModelFrame # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/frame.py", line 18, in <module> from pandas_ml.core.series import ModelSeries File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 11, in <module> class ModelSeries(ModelTransformer, pd.Series): File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 80, in ModelSeries @Appender(pd.core.generic.NDFrame.groupby.__doc__) AttributeError: type object 'NDFrame' has no attribute 'groupby' Happening with both version 5 and 6.1

    opened by ayush7 1
  • error for example https://pandas-ml.readthedocs.io/en/latest/xgboost.html

    error for example https://pandas-ml.readthedocs.io/en/latest/xgboost.html

    code from example https://pandas-ml.readthedocs.io/en/latest/xgboost.html '''import pandas_ml as pdml import sklearn.datasets as datasets df = pdml.ModelFrame(datasets.load_digits()) train_df, test_df = df.cross_validation.train_test_split() estimator = df.xgboost.XGBClassifier() train_df.fit(estimator) predicted = test_df.predict(estimator) q=1 test_df.metrics.confusion_matrix() train_df.xgboost.plot_importance()

    tuned_parameters = [{'max_depth': [3, 4]}] cv = df.grid_search.GridSearchCV(df.xgb.XGBClassifier(), tuned_parameters, cv=5)

    df.fit(cv) df.grid_search.describe(cv) q=1

    '''

    gives error ''' File "E:\Pandas\my_code\S_pandas_ml_feb27.py", line 10, in train_df.xgboost.plot_importance() File "C:\Users\sndr\Anaconda3\Lib\site-packages\pandas_ml\xgboost\base.py", line 61, in plot_importance return xgb.plot_importance(self._df.estimator.booster(),

    builtins.TypeError: 'str' object is not callable ''' I use Windows and 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 10:22:32) [MSC v.1900 64 bit (AMD64)] Python Type "help", "copyright", "credits" or "license" for more information.

    opened by Sandy4321 1
  • pandas 0.24.0 has deprecated pandas.util.decorators

    pandas 0.24.0 has deprecated pandas.util.decorators

    See https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.24.0.html#deprecations

    This causes the import statement in https://github.com/pandas-ml/pandas-ml/blob/master/pandas_ml/core/frame.py to break.

    Looks like just need to change it to 'from pandas.utils'

    opened by usul83 1
  • 'mean_absoloute_error

    'mean_absoloute_error

    from sklearn import metrics print('MAE:',metrics.mean_absoloute_error(y_test,y_pred)) module 'sklearn.metrics' has no attribute 'mean_absoloute_error This error is occurred..any solution

    opened by vikramk1507 0
  • AttributeError: type object 'NDFrame' has no attribute 'groupby'

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    from pandas_ml import ConfusionMatrix cm = ConfusionMatrix(actu, pred) cm.print_stats()


    AttributeError Traceback (most recent call last) in ----> 1 from pandas_ml import confusion_matrix 2 3 cm = ConfusionMatrix(actu, pred) 4 cm.print_stats()

    /usr/local/lib/python3.8/site-packages/pandas_ml/init.py in 1 #!/usr/bin/env python 2 ----> 3 from pandas_ml.core import ModelFrame, ModelSeries # noqa 4 from pandas_ml.tools import info # noqa 5 from pandas_ml.version import version as version # noqa

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/init.py in 1 #!/usr/bin/env python 2 ----> 3 from pandas_ml.core.frame import ModelFrame # noqa 4 from pandas_ml.core.series import ModelSeries # noqa

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/frame.py in 16 from pandas_ml.core.accessor import _AccessorMethods 17 from pandas_ml.core.generic import ModelPredictor, _shared_docs ---> 18 from pandas_ml.core.series import ModelSeries 19 20

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/series.py in 9 10 ---> 11 class ModelSeries(ModelTransformer, pd.Series): 12 """ 13 Wrapper for pandas.Series to support sklearn.preprocessing

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/series.py in ModelSeries() 78 return df 79 ---> 80 @Appender(pd.core.generic.NDFrame.groupby.doc) 81 def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, 82 group_keys=True, squeeze=False):

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    opened by gfranco008 5
  • AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score'

    AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score'

    I am using scikit-learn version 0.23.1 and I get the following error: AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score' when calling the function ConfusionMatrix.

    opened by petraknovak 11
  • Error while running train.py from speech commands in tensorflow examples. AttributeError: type object 'NDFrame' has no attribute 'groupby'

    Error while running train.py from speech commands in tensorflow examples. AttributeError: type object 'NDFrame' has no attribute 'groupby'

    Have the following error: File "train.py", line 27, in <module> from callbacks import ConfusionMatrixCallback File "/home/tesseract/ayush_workspace/NLP/WakeWord/tensorflow_trainer/ml/callbacks.py", line 21, in <module> from pandas_ml import ConfusionMatrix File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/__init__.py", line 3, in <module> from pandas_ml.core import ModelFrame, ModelSeries # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/__init__.py", line 3, in <module> from pandas_ml.core.frame import ModelFrame # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/frame.py", line 18, in <module> from pandas_ml.core.series import ModelSeries File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 11, in <module> class ModelSeries(ModelTransformer, pd.Series): File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 80, in ModelSeries @Appender(pd.core.generic.NDFrame.groupby.__doc__) AttributeError: type object 'NDFrame' has no attribute 'groupby' Happening with both version 5 and 6.1

    opened by ayush7 3
  • Pandas 1.0.0rc0/0.6.1 module 'sklearn.preprocessing' has no attribute 'Imputer'

    Pandas 1.0.0rc0/0.6.1 module 'sklearn.preprocessing' has no attribute 'Imputer'

    SKLEARN

    sklearn.preprocessing.Imputer Warning DEPRECATED

    class sklearn.preprocessing.Imputer(*args, **kwargs)[source] Imputation transformer for completing missing values.

    Read more in the User Guide.

    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-1-e0471065d85c> in <module>
          1 import pandas as pd
          2 import numpy as np
    ----> 3 import pandas_ml as pdml
          4 a1 = np.random.randint(0,2,size=(100,2))
          5 df = pd.DataFrame(a1,columns=['i1','i2'])
    
    C:\g\test\lib\pandas_ml\__init__.py in <module>
          1 #!/usr/bin/env python
          2 
    ----> 3 from pandas_ml.core import ModelFrame, ModelSeries       # noqa
          4 from pandas_ml.tools import info                         # noqa
          5 from pandas_ml.version import version as __version__     # noqa
    
    C:\g\test\lib\pandas_ml\core\__init__.py in <module>
          1 #!/usr/bin/env python
          2 
    ----> 3 from pandas_ml.core.frame import ModelFrame       # noqa
          4 from pandas_ml.core.series import ModelSeries     # noqa
    
    C:\g\test\lib\pandas_ml\core\frame.py in <module>
          8 
          9 import pandas_ml.imbaccessors as imbaccessors
    ---> 10 import pandas_ml.skaccessors as skaccessors
         11 import pandas_ml.smaccessors as smaccessors
         12 import pandas_ml.snsaccessors as snsaccessors
    
    C:\g\test\lib\pandas_ml\skaccessors\__init__.py in <module>
         17 from pandas_ml.skaccessors.neighbors import NeighborsMethods                      # noqa
         18 from pandas_ml.skaccessors.pipeline import PipelineMethods                        # noqa
    ---> 19 from pandas_ml.skaccessors.preprocessing import PreprocessingMethods              # noqa
         20 from pandas_ml.skaccessors.svm import SVMMethods                                  # noqa
    
    C:\g\test\lib\pandas_ml\skaccessors\preprocessing.py in <module>
         11     _keep_col_classes = [pp.Binarizer,
         12                          pp.FunctionTransformer,
    ---> 13                          pp.Imputer,
         14                          pp.KernelCenterer,
         15                          pp.LabelEncoder,
    
    AttributeError: module 'sklearn.preprocessing' has no attribute 'Imputer'
    
    opened by apiszcz 11
Releases(v0.6.1)
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 03, 2023
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
Time series changepoint detection

changepy Changepoint detection in time series in pure python Install pip install changepy Examples from changepy import pelt from cha

Rui Gil 92 Nov 08, 2022
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Machine Learning and Data Analytics Lab FAU 10 Dec 19, 2022
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

16 Sep 23, 2022
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022