Rasterize with the least efforts for researchers.

Related tags

Deep Learningutils3d
Overview

utils3d

Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL.

It could be helpful when you want to:

  • rasterize a simple mesh but don't want get into OpenGL chores
  • warp an image as a 2D or 3D mesh (eg. optical-flow-based warping)
  • render a optical flow image

This tool sets could help you achieve them in a few lines.

It is NOT what you are looking for when you want:

  • a differentiable rasterization tool. You should turn to nvdiffrast, pytorch3d, SoftRas etc.
  • a real-time graphics application. Though as fast as it could be, the expected performance of util3d rasterization is to be around 20 ~ 100 ms. It is not expected to fully make use of GPU performance because of the overhead of buffering every time calling rasterzation. If the best performance withou any overhead is demanded, You will have to manage buffer objects like VBO, VAO and FBO. I personally recommand moderngl as an alternative python OpenGL library.

Install

The folder of repo is a package. Clone the repo.

git clone https://github.com/EasternJournalist/utils3d.git 

Install requirements

pip install numpy
pip install moderngl

Usage

At first, one step to initialize a OpenGL context. It depends on your platform and machine.

import utils3d

ctx = utils3d.Context(standalone=True)                 # Recommanded for a standalone python program. The machine must have a display device (virtual display like X11 is also okay)
ctx = utils3d.Context(standalone=False)                 # Recommanded for a nested python script running in a windowed opengl program to share the OpenGL context, eg. Blender.
ctx = utils3d.Context(standalone=True, backend='egl')   # Recommanded for a program running on a headless linux server (without any display device)

The functions the most probably you would like to use

  • ctx.rasterize(...): rasterize trianglular mesh with vertex attributes.
  • ctx.texture(uv, texture): sample texture by a UV image. Exactly the same as grid sample, but an OpenGL shader implementation.
  • ctx.rasterize_texture(...): rasterize trianglular mesh with texture

Some other functions that could be helpful for certain purposes

  • ctx.render_flow(...): render an optical flow image given source and target geometry
  • ctx.warp_image_3d(image, pixel_positions, transform_matrix)
  • ctx.warp_image_by_flow(image, flow, occlusion_mask)

Useful tool functions

  • image_uv(width, height) : return a numpy array of shape [height, width, 2], the image uv of each pixel.
  • image_mesh(width, height, mask=None) : return a quad mesh connecting all neighboring pixels as vertices. A boolean array of shape [height, width] or [height, width, 1] mask is optional. If a mask is provided, only pixels where mask value is True are involved in te mesh.
  • triangulate(faces) : convert a polygonal mesh into a triangular mesh (naively).
  • perspective_from_image()
  • perspective_from_fov_xy()
  • projection(vertices, model_matrix=None, view_matrix=None, projection_matrix=None): project 3D points to 2D screen space following the OpenGL convention (except for using row major matrix). This also gives a insight of how the projection works when you have confusion about the coordinate system.
  • compute_face_normal(vertices, faces)
  • compute_vertex_normal(vertices, faces)
Owner
Ruicheng Wang
Microsoft Research Asia Intern
Ruicheng Wang
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
FinEAS: Financial Embedding Analysis of Sentiment ๐Ÿ“ˆ

FinEAS: Financial Embedding Analysis of Sentiment ๐Ÿ“ˆ (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

OฤŸuzhan Ercan 6 Dec 05, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
๐Ÿ– Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022