Simulator for FRC 2022 challenge: Rapid React

Related tags

Deep Learningrrsim
Overview

rrsim

Simulator for FRC 2022 challenge: Rapid React

out-1.mp4

Usage

In order to run the simulator use the following:

python3 rrsim.py [config_path]

where config_path is the path to the json configuration (default value is default_configs/config.json).

Configurations

In order to configure game, field and robots, a config JSON file must be created. See default_configs directory for examples of configurations. The following are parameters that can be defined in the configuration:

Per-robot parameters:

Name Type Meaning Example
starting_position Tuple[float, float] Starting position of the robot [1.0, 2.0]
collect_time float Time it takes the robot to collect cargo 3.0
shoot_time float Time it takes the robot to shoot cargo 1.0
velocity float Drive velocity of the robot 5.0
accuracy float Shooting accuracy of the robot 0.95
alliance Enum{RED,BLUE} Alliance of the robot RED

Field parameters:

Name Type Meaning Example
cargo_hub_timeout float Time it takes from the moment cargo enters the hub to the moment it is collectable on the floor 10.0
match_length float Length of the simulation 120.0

Units for the values in the configurations can be seen in the units section.

In addition to the configuration JSON file, a cargo distribution CSV file is required. This file is basically a matrix of integers where every integer represents the probability (relative to the other integers) that a cargo will appear in the 1x1 meter square corresponding to that number in the matrix. A default distribution is supplied in the default_configs directory.

The Simulation

Once a configuration has been created (or selected) and the simulator was ran, A window will pop up which contains the actual simulator. This window consists of two sections. In the top - the field, in which robots are represented by squares and cargo by circles. In the bottom - the scoreboard, which is itself divided into three areas, from left to right - blue score, time since the beginning of the match, red score.

Units

rrsim uses the following units:

Quantity Units
Length/Distance Meters
Time Seconds
Velocity Meters per second

Planned Additions

  • Ability to fast forward the simulation.
  • Configurable cycle types for robots
    • Collect only from one side of the field
    • Play defence
    • Collect two balls at a time
    • Score to low hub
  • Penalty for having many robots in the same place
    • Something like "work 10% slower for every robot in your immediate vicinity".

And here are some additions that are probably too overkill to bother with:

  • Robot path planning
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Nicholas Lee 3 Jan 09, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022