VD-BERT: A Unified Vision and Dialog Transformer with BERT

Overview

VD-BERT: A Unified Vision and Dialog Transformer with BERT

PyTorch Code for the following paper at EMNLP2020:
Title: VD-BERT: A Unified Vision and Dialog Transformer with BERT [pdf]
Authors: Yue Wang, Shafiq Joty, Michael R. Lyu, Irwin King, Caiming Xiong, Steven C.H. Hoi
Institute: Salesforce Research and CUHK
Abstract
Visual dialog is a challenging vision-language task, where a dialog agent needs to answer a series of questions through reasoning on the image content and dialog history. Prior work has mostly focused on various attention mechanisms to model such intricate interactions. By contrast, in this work, we propose VD-BERT, a simple yet effective framework of unified vision-dialog Transformer that leverages the pretrained BERT language models for Visual Dialog tasks. The model is unified in that (1) it captures all the interactions between the image and the multi-turn dialog using a single-stream Transformer encoder, and (2) it supports both answer ranking and answer generation seamlessly through the same architecture. More crucially, we adapt BERT for the effective fusion of vision and dialog contents via visually grounded training. Without the need of pretraining on external vision-language data, our model yields new state of the art, achieving the top position in both single-model and ensemble settings (74.54 and 75.35 NDCG scores) on the visual dialog leaderboard.

Framework illustration
VD-BERT framework

Installation

Package: Pytorch 1.1; We alo provide our Dockerfile and YAML file for setting up experiments in Google Cloud Platform (GCP).
Data: you can obtain the VisDial data from here
Visual features: we provide bottom-up attention visual features of VisDial v1.0 on data/img_feats1.0/. If you would like to extract visual features for other images, please refer to this docker image. We provide the running script on data/visual_extract_code.py, which should be used inside the provided bottom-up-attention image.

Code explanation

vdbert: store the main training and testing python files, data loader code, metrics and the ensemble code;

pytorch_pretrained_bert: mainly borrow from the Huggingface's pytorch-transformers v0.4.0;

  • modeling.py: we modify or add two classes: BertForPreTrainingLossMask and BertForVisDialGen;
  • rank_loss.py: three ranking methods: ListNet, ListMLE, approxNDCG;

sh: shell scripts to run the experiments

pred: store two json files for best single-model (74.54 NDCG) and ensemble model (75.35 NDCG)

model: You can download a pretrained model from https://storage.cloud.google.com/sfr-vd-bert-research/v1.0_from_BERT_e30.bin

Running experiments

Below the running example scripts for pretraining, finetuning (including dense annotation), and testing.

  • Pretraining bash sh/pretrain_v1.0_mlm_nsp_g4.sh
  • Finetuning for discriminative bash sh/finetune_v1.0_disc_g4.sh
  • Finetuning for discriminative specifically on dense annotation bash sh/finetune_v1.0_disc_dense_g4.sh
  • Finetuning for generative bash sh/finetune_v1.0_gen_g4.sh
  • Testing for discriminative on validation bash sh/test_v1.0_disc_val.sh
  • Testing for generative on validation bash sh/test_v1.0_gen_val.sh
  • Testing for discriminative on test bash sh/test_v1.0_disc_test.sh

Notation: mlm: masked language modeling, nsp: next sentence prediction, disc: discriminative, gen: generative, g4: 4 gpus, dense: dense annotation

Citation

If you find the code useful in your research, please consider citing our paper:

@inproceedings{
    wang2020vdbert,
    title={VD-BERT: A Unified Vision and Dialog Transformer with BERT},
    author={Yue Wang, Shafiq Joty, Michael R. Lyu, Irwin King, Caiming Xiong, Steven C.H. Hoi},
    booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020},
    year={2020},
}

License

This project is licensed under the terms of the MIT license.

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

LEE YOON HYUNG 147 Dec 05, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022