Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Overview

Pytorch 1.10.0 code for:

Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx)

Citation:

@article{negevsbelharbi2021,
  title={Negative Evidence Matters  in Interpretable Histology Image Classification},
  author={Belharbi, S. and  Pedersoli, M and
  Ben Ayed, I. and McCaffrey, L. and Granger, E.},
  journal={CoRR},
  volume={abs/xxxx.xxxxx},
  year={2021}
}

Issues:

Please create a github issue.

Content:

Method:

method

Results:

glas-results

camelyon16-results

Requirements:

pip install torch==1.10.0 -f https://download.pytorch.org/whl/cu111/torch-1.10.0%2Bcu111-cp37-cp37m-linux_x86_64.whl
pip install torchvision==0.11.1 -f https://download.pytorch.org/whl/cu111/torchvision-0.11.1%2Bcu111-cp37-cp37m-linux_x86_64.whl
  • Full dependencies
  • Build and install CRF:
    • Install Swig
    • CRF (not used in this work, but it is part of the code.)
cdir=$(pwd)
cd dlib/crf/crfwrapper/bilateralfilter
swig -python -c++ bilateralfilter.i
python setup.py install
cd $cdir
cd dlib/crf/crfwrapper/colorbilateralfilter
swig -python -c++ colorbilateralfilter.i
python setup.py install

Download datasets :

2.1. Links to dataset:

2.2. Download datasets:

You find the splits in ./folds.

Run code :

  • CAM-method: CAM over GLAS using ResNet50:
cudaid=$1
export CUDA_VISIBLE_DEVICES=$cudaid
getfreeport() {
freeport=$(python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]); s.close()')
}
export OMP_NUM_THREADS=50
export NCCL_BLOCKING_WAIT=1
plaunch=$(python -c "from os import path; import torch; print(path.join(path.dirname(torch.__file__), 'distributed', 'launch.py'))")
getfreeport
torchrun --nnodes=1 --node_rank=0 --nproc_per_node=1  \
                         --master_port=$freeport main_wsol.py \ --local_world_size=1 \
                         --task STD_CL \
                         --encoder_name resnet50 \
                         --arch STDClassifier \
                         --runmode final-mode \
                         --opt__name_optimizer sgd \
                         --batch_size 32 \
                         --eval_checkpoint_type best_localization \
                         --opt__step_size 250 \
                         --opt__gamma 0.1 \
                         --max_epochs 1000 \
                         --freeze_cl False \
                         --support_background True \
                         --method CAM \
                         --spatial_pooling WGAP \
                         --dataset GLAS \
                         --fold 0 \
                         --cudaid 0 \
                         --debug_subfolder None \
                         --amp True \
                         --opt__lr 0.003 \
                         --exp_id 11_19_2021_09_32_36_109051__423849
  • NEGEV-method: over GLAS using ResNet50:
cudaid=$1
export CUDA_VISIBLE_DEVICES=$cudaid
getfreeport() {
freeport=$(python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]); s.close()')
}
export OMP_NUM_THREADS=50
export NCCL_BLOCKING_WAIT=1
plaunch=$(python -c "from os import path; import torch; print(path.join(path.dirname(torch.__file__), 'distributed', 'launch.py'))")
getfreeport
torchrun --nnodes=1 --node_rank=0 --nproc_per_node=1 \
                         --master_port=$freeport main_wsol.py \ --local_world_size=1 \
                         --task NEGEV \
                         --world_size 1 \
                         --task NEGEV \
                         --encoder_name resnet50 \
                         --arch UnetNEGEV \
                         --runmode final-mode \
                         --opt__name_optimizer sgd \
                         --dist_backend mpi \
                         --batch_size 32 \
                         --eval_checkpoint_type best_localization \
                         --opt__step_size 250 \
                         --opt__gamma 0.1 \
                         --max_epochs 1000 \
                         --freeze_cl True \
                         --support_background True \
                         --method CAM \
                         --spatial_pooling WGAP \
                         --dataset GLAS \
                         --fold 0 \
                         --cudaid 0 \
                         --debug_subfolder None \
                         --amp True \
                         --opt__lr 0.1 \
                         --negev_ptretrained_cl_cp best_localization \
                         --elb_init_t 1.0 \
                         --elb_max_t 10.0 \
                         --elb_mulcoef 1.01 \
                         --sl_ng True \
                         --sl_ng_seeder probability_seeder \
                         --sl_ng_lambda 1.0 \
                         --sl_ng_start_ep 0 \
                         --sl_ng_end_ep -1 \
                         --sl_ng_min 1 \
                         --sl_ng_max 1 \
                         --sl_ng_ksz 3 \
                         --crf_ng False \
                         --jcrf_ng False \
                         --neg_samples_ng False \
                         --max_sizepos_ng False \
                         --exp_id 12_13_2021_00_49_48_796469__3314599
  • Train the CAM-method first. Then, copy the best model from the exp folder into the folder ./pretrained. Copy the whole folder with this name format GLAS-0-resnet50-CAM-WGAP-cp_best_localization.
Owner
Soufiane Belharbi
Post-doc at LIVIA Lab. ÉTS Montreal, in collab. with McCaffrey Lab. /GCRC McGill. Training neural networks with weak supervision.
Soufiane Belharbi
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022