Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

Overview

TripClick Baselines with Improved Training Data

Welcome 🙌 to the hub-repo of our paper:

Establishing Strong Baselines for TripClick Health Retrieval Sebastian Hofstätter, Sophia Althammer, Mete Sertkan and Allan Hanbury

https://arxiv.org/abs/2201.00365

tl;dr We create strong re-ranking and dense retrieval baselines (BERTCAT, BERTDOT, ColBERT, and TK) for TripClick (health ad-hoc retrieval). We improve the – originally too noisy – training data with a simple negative sampling policy. We achieve large gains over BM25 in the re-ranking and retrieval setting on TripClick, which were not achieved with the original baselines. We publish the improved training files for everyone to use.

If you have any questions, suggestions, or want to collaborate please don't hesitate to get in contact with us via Twitter or mail to [email protected]

Please cite our work as:

@misc{hofstaetter2022tripclick,
      title={Establishing Strong Baselines for TripClick Health Retrieval}, 
      author={Sebastian Hofst{\"a}tter and Sophia Althammer and Mete Sertkan and Allan Hanbury},
      year={2022},
      eprint={2201.00365},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}

Training Files

We publish the improved training files without the text content instead using the ids from TripClick (with permission from the TripClick owners); for the text content please get the full TripClick dataset from the TripClick Github page.

Our training files have the format query_id pos_passage_id neg_passage_id (with tab separation) and are available as a HuggingFace dataset: https://huggingface.co/datasets/sebastian-hofstaetter/tripclick-training

Source Code

The full source-code for our paper is here, as part of our matchmaker library: https://github.com/sebastian-hofstaetter/matchmaker

We provide getting started guides for training re-ranking and retrieval models, as well as a range of evaluation setups.

Pre-Trained Models

Unfortunately, the license of TripClick does not allow us to publish the trained models.

TripClick Baselines Results

For more information and commentary on the results, please see our ECIR paper.

BM25 Top200 Re-Ranking

Model BERT Instance HEAD TORSO TAIL
nDCG MRR nDCG MRR nDCG MRR
Original Baselines
BM25 -- .140 .276 .206 .283 .267 .258
ConvKNRM -- .198 .420 .243 .347 .271 .265
TK -- .208 .434 .272 .381 .295 .280
Our Improved Baselines
TK -- .232 .472 .300 .390 .345 .319
ColBERT SciBERT .270 .556 .326 .426 .374 .347
PubMedBERT-Abstract .278 .557 .340 .431 .387 .361
BERT_CAT DistilBERT .272 .556 .333 .427 .381 .355
BERT-Base .287 .579 .349 .453 .396 .366
SciBERT .294 .595 .360 .459 .408 .377
PubMedBERT-Full .298 .582 .365 .462 .412 .381
PubMedBERT-Abstract .296 .587 .359 .456 .409 .380
Ensemble (Last 3 BERT_CAT) .303 .601 .370 .472 .420 .392

Dense Retrieval Results

Model BERT Instance Head(DCTR)
[email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Original Baselines
BM25 -- 31% .140 .276 .499 .621 .834
Our Improved Baselines
BERT_DOT DistilBERT 39% .236 .512 .550 .648 .813
SciBERT 41% .243 .530 .562 .640 .793
PubMedBERT 40% .235 .509 .582 .673 .828
Owner
Sebastian Hofstätter
PhD student; working on machine learning and information retrieval
Sebastian Hofstätter
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022