Meandering In Networks of Entities to Reach Verisimilar Answers

Overview

MINERVA

Meandering In Networks of Entities to Reach Verisimilar Answers

Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoning over Paths in Knowledge Bases using Reinforcement Learning

MINERVA is a RL agent which answers queries in a knowledge graph of entities and relations. Starting from an entity node, MINERVA learns to navigate the graph conditioned on the input query till it reaches the answer entity. For example, give the query, (Colin Kaepernick, PLAYERHOMESTADIUM, ?), MINERVA takes the path in the knowledge graph below as highlighted. Note: Only the solid edges are observed in the graph, the dashed edges are unobsrved. gif gif courtesy of Bhuvi Gupta

Requirements

To install the various python dependencies (including tensorflow)

pip install -r requirements.txt

Training

Training MINERVA is easy!. The hyperparam configs for each experiments are in the configs directory. To start a particular experiment, just do

sh run.sh configs/${dataset}.sh

where the ${dataset}.sh is the name of the config file. For example,

sh run.sh configs/countries_s3.sh

Testing

We are also releasing pre-trained models so that you can directly use MINERVA for query answering. They are located in the saved_models directory. To load the model, set the load_model to 1 in the config file (default value 0) and model_load_dir to point to the saved_model. For example in configs/countries_s2.sh, make

load_model=1
model_load_dir="saved_models/countries_s2/model.ckpt"

Output

The code outputs the evaluation of MINERVA on the datasets provided. The metrics used for evaluation are Hits@{1,3,5,10,20} and MRR (which in the case of Countries is AUC-PR). Along with this, the code also outputs the answers MINERVA reached in a file.

Code Structure

The structure of the code is as follows

Code
├── Model
│    ├── Trainer
│    ├── Agent
│    ├── Environment
│    └── Baseline
├── Data
│    ├── Grapher
│    ├── Batcher
│    └── Data Preprocessing scripts
│            ├── create_vocab
│            ├── create_graph
│            ├── Trainer
│            └── Baseline

Data Format

To run MINERVA on a custom graph based dataset, you would need the graph and the queries as triples in the form of (e1,r, e2). Where e1, and e2 are nodes connected by the edge r. The vocab can of the dataset can be created using the create_vocab.py file found in data/data preprocessing scripts. The vocab needs to be stores in the json format {'entity/relation': ID}. The following shows the directory structure of the Kinship dataset.

kinship
    ├── graph.txt
    ├── train.txt
    ├── dev.txt
    ├── test.txt
    └── Vocab
            ├── entity_vocab.json
            └── relation_vocab.json

Citation

If you use this code, please cite our paper

@inproceedings{minerva,
  title = {Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning},
  author = {Das, Rajarshi and Dhuliawala, Shehzaad and Zaheer, Manzil and Vilnis, Luke and Durugkar, Ishan and Krishnamurthy, Akshay and Smola, Alex and McCallum, Andrew},
  booktitle = {ICLR},
  year = 2018
}
Owner
Shehzaad Dhuliawala
Shehzaad Dhuliawala
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022