Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Overview

Targeted Trojan-Horse Attacks on Language-based Image Retrieval

Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval. This project implements TTH for CLIP and CLIP-flickr on Flickr30k.

image-20220422124016610

Environment

We used Anaconda to setup a deep learning workspace that supports PyTorch. Run the following script to install all the required packages.

conda create -n tth python==3.8
conda activate tth
git clone https://github.com/fly-dragon211/tth.git
cd tth
pip install -r requirements.txt

Data prepare

Dataset

We put the dataset files on ~/VisualSearch.

mkdir ~/VisualSearch
unzip -q "TTH_VisualSearch.zip" -d "~/VisualSearch/"

Readers need to download Flickr30k dataset and move the image files to ~/VisualSearch/flickr30k/flickr30k-images/. The Flickr30k is available on official website or Baidu Yun (https://pan.baidu.com/s/1r0RVUwctJsI0iNuVXHQ6kA 提取码:hrf3).

CLIP-flickr and CLIP-coco models

We provide the CLIP model which finetuned on Flickr30k and MSCOCO:

Baidu Yun: https://pan.baidu.com/s/1n8Sa7Fr9-G9KbZ3-FxS1_g?pwd=sbsv 提取码: sbsv

Readers can move the model files to ~/VisualSearch/flickr30k

TTH attack

CLIP

 python TTH_attack.py \
 --device 0 flickr30ktest_add_ad None flickr30ktrain/flickr30kval/test \
 --attack_trainData flickr30ktrain --config_name TTH.CLIPEnd2End_adjust \
 --parm_adjust_config 0_1_1 --rootpath ~/VisualSearch \
 --batch_size 256 --query_sets flickr30ktest_add_ad.caption.txt

R10 of truly relevant images and novel images w.r.t. specific queries. LBIR setup: CLIP + Flickr30ktest. Adversarial patches are learned with Flickr30ktrain as training data. The clear drop of R10 for truley relevant images and the clear increase of R10 for novel images show the success of the proposed method for making TTH attacks

image-20220422125243619

CLIP-flickr

 CLIP_flickr="~/VisualSearch/flickr30k/CLIP-flickr.tar"
 
 python TTH_attack.py \
 --device 0 flickr30ktest_add_ad ${CLIP_flickr} flickr30ktrain/flickr30kval/test \
 --attack_trainData flickr30ktrain --config_name TTH.CLIPEnd2End_adjust \
 --parm_adjust_config 0_1_0 --rootpath ~/VisualSearch \
 --batch_size 256 --query_sets flickr30ktest_add_ad.caption.txt

R10 of truly relevant images and novel images w.r.t. specific queries. LBIR setup: CLIP-flickr + Flickr30ktest.

image-20220422125609322

References

@article{hu2022targeted,
  title={Targeted Trojan-Horse Attacks on Language-based Image Retrieval},
  author={Hu, Fan and Chen, Aozhu and Li, Xirong},
  journal={arXiv},
  year={2022}
}

Contact

If you enounter any issue when running the code, please feel free to reach us either by creating a new issue in the github or by emailing

Owner
fine
I am an ant who believes the miracle. Try as you can, come on!
fine
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022