PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

Related tags

Deep LearningMINE
Overview

MINE: Continuous-Depth MPI with Neural Radiance Fields

Project Page | Video

PyTorch implementation for our ICCV 2021 paper.

MINE: Towards Continuous Depth MPI with NeRF for Novel View Synthesis
Jiaxin Li*1, Zijian Feng*1, Qi She1, Henghui Ding1, Changhu Wang1, Gim Hee Lee2
1ByteDance, 2National University of Singapore
*denotes equal contribution

Our MINE takes a single image as input and densely reconstructs the frustum of the camera, through which we can easily render novel views of the given scene:

ferngif

The overall architecture of our method:

Run training on the LLFF dataset:

Firstly, set up your conda environment:

conda env create -f environment.yml 
conda activate MINE

Download the pre-downsampled version of the LLFF dataset from Google Drive, unzip it and put it in the root of the project, then start training by running the following command:

sh start_training.sh MASTER_ADDR="localhost" MASTER_PORT=1234 N_NODES=1 GPUS_PER_NODE=2 NODE_RANK=0 WORKSPACE=/run/user/3861/vs_tmp DATASET=llff VERSION=debug EXTRA_CONFIG='{"training.gpus": "0,1"}'

You may find the tensorboard logs and checkpoints in the sub-working directory (WORKSPACE + VERSION).

Apart from the LLFF dataset, we experimented on the RealEstate10K, KITTI Raw and the Flowers Light Fields datasets - the data pre-processing codes and training flow for these datasets will be released later.

Running our pretrained models:

We release the pretrained models trained on the RealEstate10K, KITTI and the Flowers datasets:

Dataset N Input Resolution Download Link
RealEstate10K 32 384x256 Google Drive
RealEstate10K 64 384x256 Google Drive
KITTI 32 768x256 Google Drive
KITTI 64 768x256 Google Drive
Flowers 32 512x384 Google Drive
Flowers 64 512x384 Google Drive

To run the models, download the checkpoint and the hyper-parameter yaml file and place them in the same directory, then run the following script:

python3 visualizations/image_to_video.py --checkpoint_path MINE_realestate10k_384x256_monodepth2_N64/checkpoint.pth --gpus 0 --data_path visualizations/home.jpg --output_dir .

Citation

If you find our work helpful to your research, please cite our paper:

@inproceedings{mine2021,
  title={MINE: Towards Continuous Depth MPI with NeRF for Novel View Synthesis},
  author={Jiaxin Li and Zijian Feng and Qi She and Henghui Ding and Changhu Wang and Gim Hee Lee},
  year={2021},
  booktitle={ICCV},
}
Owner
Zijian Feng
machine learning | computer vision | random traveller | music enthusiast
Zijian Feng
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023