Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

Related tags

Deep LearningImagine
Overview

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

This repo contains the code base of the paper Language as a Cognitive Tool to Imagine Goals inCuriosity-Driven Exploration:

Colas, C., Karch, T., Lair, N., Dussoux, J. M., Moulin-Frier, C., Dominey, P. F., & Oudeyer, P. Y. (2020). Language as a Cognitive Tool to Imagine Goals in Curiosity-Driven Exploration, Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020).

Context

Learning open-ended repertoire of skills requires agents that autonomously explore their environments. To do so, they need to self-organize their exploration by generating and selecting their goals (IMGEP). In this framework, how can agents make creative discoveries?

In this paper, we propose to equip agents with language grounding capabilities in order to represent goals as language. We then leverage language compositionality and systematic generalization as a means to perform out-of-distribution goal generation.

We follow a developmental approach inspired by the role of egocentric language in child development (Piaget and Vygotsky) and generative expressivity (Chomsky).

Notebook

We propose a Google Colab Notebook to walk you through the IMAGINE learning algorithm. The notebook contains:

  • a full decomposition of the IMAGINE architecture
  • visualizations of the modules' behavior during inference
  • interactive generations of rollouts conditioned on goal sentences

Requirements

The dependencies are listed in the requirements.txt file. Our conda environment can be cloned with:

conda env create -f environment.yml

Demo

The demo script is /src/imagine/experiments/play.py. It can be used as such:

python play.py

RL training

Running the algorithm

The main running script is /src/imagine/experiments/train.py. It can be used as such:

python train.py --num_cpu=6 --architecture=modular_attention --imagination_method=CGH --reward_function=learned_lstm  --goal_invention=from_epoch_10 --n_epochs=167

Note that the number of cpu is an important parameter. Changing it is not equivalent to reducing/increasing training time. One epoch is 600 episodes. Other parameters can be found in train.py. The config.py file contains all parameters and is overriden by parameters defined in train.py.

Logs and results are saved in /src/data/expe/PlaygroundNavigation-v1/trial_id/. It contains policy and reward function checkpoints, raw logs (log.txt), a csv containing main metrics (progress.csv) and a json file with the parameters (params.json).

Plotting results

Results for one run can be plotted using the script /src/analyses/new_plot.py

Links

Citation

@article{colas2020language,
	title={Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration},
	author={Colas, Cédric and Karch, Tristan and Lair, Nicolas and Dussoux, Jean-Michel and Moulin-Frier, Clément and Dominey, F Peter and Oudeyer, Pierre-Yves},
	journal={NeurIPS 2020},
	year={2020}
}
Owner
Flowers Team
Flowers Team
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022