Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Overview

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning

Sriram Ravula, Georgios Smyrnis

This is the code for our project "Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning". We make use of contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations.

Requirements

In order to run the code for our models, it is necessary to install pytorch_lightning and all of its dependencies. Moreover, it is necessary that the following files from the OpenAI CLIP repository (https://github.com/openai/CLIP) are added, along with their respective requirements:

Structure

The following source files are required to execute the various experiments mentioned in our report:

  • baselines.py: Code which performs training and evaluation of the baseline end-to-end supervised model.
  • noisy_clip_dataparallel.py: Performs training and evaluation of the student model, based on the CLIP architecture.
  • zeroshot_validation.py: Performs evaluation of the zero-shot model.
  • linear_probe.py: Performs training and evaluation of a linear probe on top of the learned representations.
  • noise_level_testing.py: Evaluation of a trained model on various noise levels added in the input.
  • utils.py: General library for functions used throughout our code.

We also provide slice_imagenet100.py, a code to be used one time to generate the ImageNet-100 subset we used, as defined by imagenet100.txt. In order to run most of the code we provide, please first run this file with the proper source path to the full ImageNet dataset (can be downloaded separately at https://image-net.org/download) and desired destination path for the 100-class subset. Then, provide the path to your 100-class ImageNet subset in the yaml config files. For further details, refer to the comments in slice_imagenet100.py and the global variables set at the beginning of the script.

In the config/ folder, some sample configuration files for our experiments are included.

Examples

Using the following snippets of code, the experiments described in the report can be run. Note that editing the batch_size and gpus parameters of the sample files will lead to speedup and increased performance for the contrastive models.

  • Short_Evaluation_Demo.ipynb: A small demo of the types of distortions we use, as well as a comparison between the baseline and linear evaluations. You will need to download the checkpoints from the google drive link for this to run.
  • python baselines.py --config_file config/Supervised_CLIP_Baselines/sample.yaml: Train a baseline model, in an end-to-end supervised fashion.
  • python noisy_clip_dataparallel.py --config_file config/NoisyRN101/sample.yaml: Trains a CLIP model using contrastive learning.
  • python zeroshot_validation.py --config_file config/NoisyRN101/sample.yaml --ckpt_file rand90_zeroshot.ckpt: Performs zeroshot evaluation of a trained zero-shot clip model. The sample file to be used is the same one specified during training (for flexibility, checkpoint file provided separately).
  • python linear_probe.py --config_file config/LinearProbeSubset/sample.yaml: Trains a linear probe on top of a representation learned using contrastive loss. This requires the user to specify a checkpoint file in the yaml config file.
  • python noise_level_testing.py --config_file config/NoiseLevelTesting/sample.yaml: Evaluates a trained model for various levels of noise in the dataset. This requires the user to specify a checkpoint file in the yaml config file.
Owner
Sriram Ravula
Sriram Ravula
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022