Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

Related tags

Deep Learningbpr
Overview

BPR

Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash technique into Dense Passage Retriever (DPR) to represent the passage embeddings using compact binary codes rather than continuous vectors. It substantially reduces the memory size without a loss of accuracy tested on Natural Questions and TriviaQA datasets.

BPR was originally developed to improve the computational efficiency of the Sōseki question answering system submitted to the Systems under 6GB track in the NeurIPS 2020 EfficientQA competition. Please refer to our ACL 2021 paper for further technical details.

Installation

BPR can be installed using Poetry:

poetry install

The virtual environment automatically created by Poetry can be activated by poetry shell.

Alternatively, you can install required libraries using pip:

pip install -r requirements.txt

Trained Models

(coming soon)

Reproducing Experiments

Before you start, you need to download the datasets available on the DPR website into <DPR_DATASET_DIR>.

The experimental results on the Natural Questions dataset can be reproduced by running the commands provided in this section. We used a server with 8 NVIDIA Tesla V100 GPUs with 16GB memory in the experiments. The results on the TriviaQA dataset can be reproduced by changing the file names of the input dataset to the corresponding ones (e.g., nq-train.json -> trivia-train.json).

1. Building passage database

python build_passage_db.py \
    --passage_file=<DPR_DATASET_DIR>/wikipedia_split/psgs_w100.tsv \
    --output_file=<PASSAGE_DB_FILE>

2. Training BPR

python train_biencoder.py \
   --gpus=8 \
   --distributed_backend=ddp \
   --train_file=<DPR_DATASET_DIR>/retriever/nq-train.json \
   --eval_file=<DPR_DATASET_DIR>/retriever/nq-dev.json \
   --gradient_clip_val=2.0 \
   --max_epochs=40 \
   --binary

3. Building passage embeddings

python generate_embeddings.py \
   --biencoder_file=<BPR_CHECKPOINT_FILE> \
   --output_file=<EMBEDDING_FILE> \
   --passage_db_file=<PASSAGE_DB_FILE> \
   --batch_size=4096 \
   --parallel

4. Evaluating BPR

python evaluate_retriever.py \
    --binary_k=1000 \
    --biencoder_file=<BPR_CHECKPOINT_FILE> \
    --embedding_file=<EMBEDDING_FILE> \
    --passage_db_file=<PASSAGE_DB_FILE> \
    --qa_file=<DPR_DATASET_DIR>/retriever/qas/nq-test.csv \
    --parallel

5. Creating dataset for reader

python evaluate_retriever.py \
    --binary_k=1000 \
    --biencoder_file=<BPR_CHECKPOINT_FILE> \
    --embedding_file=<EMBEDDING_FILE> \
    --passage_db_file=<PASSAGE_DB_FILE> \
    --qa_file=<DPR_DATASET_DIR>/retriever/qas/nq-train.csv \
    --output_file=<READER_TRAIN_FILE> \
    --top_k=200 \
    --parallel

python evaluate_retriever.py \
    --binary_k=1000 \
    --biencoder_file=<BPR_CHECKPOINT_FILE> \
    --embedding_file=<EMBEDDING_FILE> \
    --passage_db_file=<PASSAGE_DB_FILE> \
    --qa_file=<DPR_DATASET_DIR>/retriever/qas/nq-dev.csv \
    --output_file=<READER_DEV_FILE> \
    --top_k=200 \
    --parallel

python evaluate_retriever.py \
    --binary_k=1000 \
    --biencoder_file=<BPR_CHECKPOINT_FILE> \
    --embedding_file=<EMBEDDING_FILE> \
    --passage_db_file=<PASSAGE_DB_FILE> \
    --qa_file==<DPR_DATASET_DIR>/retriever/qas/nq-test.csv \
    --output_file=<READER_TEST_FILE> \
    --top_k=200 \
    --parallel

6. Training reader

python train_reader.py \
   --gpus=8 \
   --distributed_backend=ddp \
   --train_file=<READER_TRAIN_FILE> \
   --validation_file=<READER_DEV_FILE> \
   --test_file=<READER_TEST_FILE> \
   --learning_rate=2e-5 \
   --max_epochs=20 \
   --accumulate_grad_batches=4 \
   --nq_gold_train_file=<DPR_DATASET_DIR>/gold_passages_info/nq_train.json \
   --nq_gold_validation_file=<DPR_DATASET_DIR>/gold_passages_info/nq_dev.json \
   --nq_gold_test_file=<DPR_DATASET_DIR>/gold_passages_info/nq_test.json \
   --train_batch_size=1 \
   --eval_batch_size=2 \
   --gradient_clip_val=2.0

7. Evaluating reader

python evaluate_reader.py \
    --gpus=8 \
    --distributed_backend=ddp \
    --checkpoint_file=<READER_CHECKPOINT_FILE> \
    --eval_batch_size=1

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Citation

If you find this work useful, please cite the following paper:

@inproceedings{yamada2021bpr,
  title={Efficient Passage Retrieval with Hashing for Open-domain Question Answering},
  author={Ikuya Yamada and Akari Asai and Hannaneh Hajishirzi},
  booktitle={ACL},
  year={2021}
}
Owner
Studio Ousia
Studio Ousia
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022