PlenOctrees: NeRF-SH Training & Conversion

Overview

PlenOctrees Official Repo: NeRF-SH training and conversion

This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting part of the code release for:

PlenOctrees for Real Time Rendering of Neural Radiance Fields
Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, Angjoo Kanazawa

https://alexyu.net/plenoctrees

Please see the following repository for our C++ PlenOctrees volume renderer: https://github.com/sxyu/volrend

Setup

Please use conda for a replicable environment.

conda env create -f environment.yml
conda activate plenoctree
pip install --upgrade pip

Or you can install the dependencies manually by:

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch
conda install tqdm
pip install -r requirements.txt

[Optional] Install GPU and TPU support for Jax. This is useful for NeRF-SH training. Remember to change cuda110 to your CUDA version, e.g. cuda102 for CUDA 10.2.

pip install --upgrade jax jaxlib==0.1.65+cuda110 -f https://storage.googleapis.com/jax-releases/jax_releases.html

NeRF-SH Training

We release our trained NeRF-SH models as well as converted plenoctrees at Google Drive. You can also use the following commands to reproduce the NeRF-SH models.

Training and evaluation on the NeRF-Synthetic dataset (Google Drive):

export DATA_ROOT=./data/NeRF/nerf_synthetic/
export CKPT_ROOT=./data/Plenoctree/checkpoints/syn_sh16/
export SCENE=chair
export CONFIG_FILE=nerf_sh/config/blender

python -m nerf_sh.train \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

python -m nerf_sh.eval \
    --chunk 4096 \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

Note for SCENE=mic, we adopt a warmup learning rate schedule (--lr_delay_steps 50000 --lr_delay_mult 0.01) to avoid unstable initialization.

Training and evaluation on TanksAndTemple dataset (Download Link) from the NSVF paper:

export DATA_ROOT=./data/TanksAndTemple/
export CKPT_ROOT=./data/Plenoctree/checkpoints/tt_sh25/
export SCENE=Barn
export CONFIG_FILE=nerf_sh/config/tt

python -m nerf_sh.train \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

python -m nerf_sh.eval \
    --chunk 4096 \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

PlenOctrees Conversion and Optimization

Before converting the NeRF-SH models into plenoctrees, you should already have the NeRF-SH models trained/downloaded and placed at ./data/PlenOctree/checkpoints/{syn_sh16, tt_sh25}/. Also make sure you have the training data placed at ./data/{NeRF/nerf_synthetic, TanksAndTemple}.

To reproduce our results in the paper, you can simplly run:

# NeRF-Synthetic dataset
python -m octree.task_manager octree/config/syn_sh16.json --gpus="0 1 2 3"

# TanksAndTemple dataset
python -m octree.task_manager octree/config/tt_sh25.json --gpus="0 1 2 3"

The above command will parallel all scenes in the dataset across the gpus you set. The json files contain dedicated hyper-parameters towards better performance (PSNR, SSIM, LPIPS). So in this setting, a 24GB GPU is needed for each scene and in averange the process takes about 15 minutes to finish. The converted plenoctree will be saved to ./data/PlenOctree/checkpoints/{syn_sh16, tt_sh25}/$SCENE/octrees/.

Below is a more straight-forward script for demonstration purpose:

export DATA_ROOT=./data/NeRF/nerf_synthetic/
export CKPT_ROOT=./data/PlenOctree/checkpoints/syn_sh16
export SCENE=chair
export CONFIG_FILE=nerf_sh/config/blender

python -m octree.extraction \
    --train_dir $CKPT_ROOT/$SCENE/ --is_jaxnerf_ckpt \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree.npz

python -m octree.optimization \
    --input $CKPT_ROOT/$SCENE/tree.npz \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree_opt.npz

python -m octree.evaluation \
    --input $CKPT_ROOT/$SCENE/octrees/tree_opt.npz \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

# [Optional] Only used for in-browser viewing.
python -m octree.compression \
    $CKPT_ROOT/$SCENE/octrees/tree_opt.npz \
    --out_dir $CKPT_ROOT/$SCENE/ \
    --overwrite

MISC

Project Vanilla NeRF to PlenOctree

A vanilla trained NeRF can also be converted to a plenoctree for fast inference. To mimic the view-independency propertity as in a NeRF-SH model, we project the vanilla NeRF model to SH basis functions by sampling view directions for every points in the space. Though this makes converting vanilla NeRF to a plenoctree possible, the projection process inevitability loses the quality of the model, even with a large amount of sampling view directions (which takes hours to finish). So we recommend to just directly train a NeRF-SH model end-to-end.

Below is a example of projecting a trained vanilla NeRF model from JaxNeRF repo (Download Link) to a plenoctree. After extraction, you can optimize & evaluate & compress the plenoctree just like usual:

export DATA_ROOT=./data/NeRF/nerf_synthetic/ 
export CKPT_ROOT=./data/JaxNeRF/jaxnerf_models/blender/ 
export SCENE=drums
export CONFIG_FILE=nerf_sh/config/misc/proj

python -m octree.extraction \
    --train_dir $CKPT_ROOT/$SCENE/ --is_jaxnerf_ckpt \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree.npz \
    --projection_samples 100 \
    --radius 1.3

Note --projection_samples controls how many sampling view directions are used. More sampling view directions give better projection quality but takes longer time to finish. For example, for the drums scene in the NeRF-Synthetic dataset, 100 / 10000 sampling view directions takes about 2 mins / 2 hours to finish the plenoctree extraction. It produce raw plenoctrees with PSNR=22.49 / 23.84 (before optimization). Note that extraction from a NeRF-SH model produce a raw plenoctree with PSNR=25.01.

Owner
Alex Yu
Undergrad at UC Berkeley
Alex Yu
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023