A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow

Overview

Build Status Doc Status License Join the chat at https://gitter.im/thu-ml/zhusuan

ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and deep learning. ZhuSuan is built upon TensorFlow. Unlike existing deep learning libraries, which are mainly designed for deterministic neural networks and supervised tasks, ZhuSuan provides deep learning style primitives and algorithms for building probabilistic models and applying Bayesian inference. The supported inference algorithms include:

  • Variational Inference (VI) with programmable variational posteriors, various objectives and advanced gradient estimators (SGVB, REINFORCE, VIMCO, etc.).

  • Importance Sampling (IS) for learning and evaluating models, with programmable proposals.

  • Hamiltonian Monte Carlo (HMC) with parallel chains, and optional automatic parameter tuning.

  • Stochastic Gradient Markov Chain Monte Carlo (SGMCMC): SGLD, PSGLD, SGHMC, and SGNHT.

Installation

ZhuSuan is still under development. Before the first stable release (1.0), please clone the repository and run

pip install .

in the main directory. This will install ZhuSuan and its dependencies automatically. ZhuSuan also requires TensorFlow 1.13.0 or later. Because users should choose whether to install the cpu or gpu version of TensorFlow, we do not include it in the dependencies. See Installing TensorFlow.

If you are developing ZhuSuan, you may want to install in an "editable" or "develop" mode. Please refer to the Contributing section below.

Documentation

Examples

We provide examples on traditional hierarchical Bayesian models and recent deep generative models.

To run the provided examples, you may need extra dependencies to be installed. This can be done by

pip install ".[examples]"
  • Gaussian: HMC
  • Toy 2D Intractable Posterior: SGVB
  • Bayesian Neural Networks: SGVB, SGMCMC
  • Variational Autoencoder (VAE): SGVB, IWAE
  • Convolutional VAE: SGVB
  • Semi-supervised VAE (Kingma, 2014): SGVB, Adaptive IS
  • Deep Sigmoid Belief Networks Adaptive IS, VIMCO
  • Logistic Normal Topic Model: HMC
  • Probabilistic Matrix Factorization: HMC
  • Sparse Variational Gaussian Process: SGVB

Citing ZhuSuan

If you find ZhuSuan useful, please cite it in your publications. We provide a BibTeX entry of the ZhuSuan white paper below.

@ARTICLE{zhusuan2017,
    title={Zhu{S}uan: A Library for {B}ayesian Deep Learning},
    author={Shi, Jiaxin and Chen, Jianfei. and Zhu, Jun and Sun, Shengyang
    and Luo, Yucen and Gu, Yihong and Zhou, Yuhao},
    journal={arXiv preprint arXiv:1709.05870},
    year=2017,
}

Contributing

We always welcome contributions to help make ZhuSuan better. If you would like to contribute, please check out the guidelines here.

Owner
Tsinghua Machine Learning Group
Tsinghua Machine Learning Group
CINECA molecular dynamics tutorial set

High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss

J. W. Dell 0 Mar 13, 2022
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

PyUpBit CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing Paper Table of Contents About The Project Usage Cont

Hyeong Kyun (Daniel) Park 1 Jun 28, 2022
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022
LynxKite: a complete graph data science platform for very large graphs and other datasets.

LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.

124 Dec 14, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
Advanced Pandas Vault — Utilities, Functions and Snippets (by @firmai).

PandasVault ⁠— Advanced Pandas Functions and Code Snippets The only Pandas utility package you would ever need. It has no exotic external dependencies

Derek Snow 374 Jan 07, 2023
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
In this tutorial, raster models of soil depth and soil water holding capacity for the United States will be sampled at random geographic coordinates within the state of Colorado.

Raster_Sampling_Demo (Resulting graph of this demo) Background Sampling values of a raster at specific geographic coordinates can be done with a numbe

2 Dec 13, 2022
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
Retentioneering 581 Jan 07, 2023
EOD Historical Data Python Library (Unofficial)

EOD Historical Data Python Library (Unofficial) https://eodhistoricaldata.com Installation python3 -m pip install eodhistoricaldata Note Demo API key

Michael Whittle 20 Dec 22, 2022
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022