UPSNet: A Unified Panoptic Segmentation Network

Overview

UPSNet: A Unified Panoptic Segmentation Network

Introduction

UPSNet is initially described in a CVPR 2019 oral paper.

Disclaimer

This repository is tested under Python 3.6, PyTorch 0.4.1. And model training is done with 16 GPUs by using horovod. It should also work under Python 2.7 / PyTorch 1.0 and with 4 GPUs.

License

© Uber, 2018-2019. Licensed under the Uber Non-Commercial License.

Citing UPSNet

If you find UPSNet is useful in your research, please consider citing:

@inproceedings{xiong19upsnet,
    Author = {Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, Raquel Urtasun},
    Title = {UPSNet: A Unified Panoptic Segmentation Network},
    Conference = {CVPR},
    Year = {2019}
}

Main Results

COCO 2017 (trained on train-2017 set)

test split PQ SQ RQ PQTh PQSt
UPSNet-50 val 42.5 78.0 52.4 48.5 33.4
UPSNet-101-DCN test-dev 46.6 80.5 56.9 53.2 36.7

Cityscapes

PQ SQ RQ PQTh PQSt
UPSNet-50 59.3 79.7 73.0 54.6 62.7
UPSNet-101-COCO (ms test) 61.8 81.3 74.8 57.6 64.8

Requirements: Software

We recommend using Anaconda3 as it already includes many common packages.

Requirements: Hardware

We recommend using 4~16 GPUs with at least 11 GB memory to train our model.

Installation

Clone this repo to $UPSNet_ROOT

Run init.sh to build essential C++/CUDA modules and download pretrained model.

For Cityscapes:

Assuming you already downloaded Cityscapes dataset at $CITYSCAPES_ROOT and TrainIds label images are generated, please create a soft link by ln -s $CITYSCAPES_ROOT data/cityscapes under UPSNet_ROOT, and run init_cityscapes.sh to prepare Cityscapes dataset for UPSNet.

For COCO:

Assuming you already downloaded COCO dataset at $COCO_ROOT and have annotations and images folders under it, please create a soft link by ln -s $COCO_ROOT data/coco under UPSNet_ROOT, and run init_coco.sh to prepare COCO dataset for UPSNet.

Training:

python upsnet/upsnet_end2end_train.py --cfg upsnet/experiments/$EXP.yaml

Test:

python upsnet/upsnet_end2end_test.py --cfg upsnet/experiments/$EXP.yaml

We provide serveral config files (16/4 GPUs for Cityscapes/COCO dataset) under upsnet/experiments folder.

Model Weights

The model weights that can reproduce numbers in our paper are available now. Please follow these steps to use them:

Run download_weights.sh to get trained model weights for Cityscapes and COCO.

For Cityscapes:

python upsnet/upsnet_end2end_test.py --cfg upsnet/experiments/upsnet_resnet50_cityscapes_16gpu.yaml --weight_path ./model/upsnet_resnet_50_cityscapes_12000.pth
python upsnet/upsnet_end2end_test.py --cfg upsnet/experiments/upsnet_resnet101_cityscapes_w_coco_16gpu.yaml --weight_path ./model/upsnet_resnet_101_cityscapes_w_coco_3000.pth

For COCO:

python upsnet/upsnet_end2end_test.py --cfg upsnet/experiments/upsnet_resnet50_coco_16gpu.yaml --weight_path model/upsnet_resnet_50_coco_90000.pth
python upsnet/upsnet_end2end_test.py --cfg upsnet/experiments/upsnet_resnet101_dcn_coco_3x_16gpu.yaml --weight_path model/upsnet_resnet_101_dcn_coco_270000.pth
Owner
Uber Research
Uber's research projects. Projects in this organization are not built for production usage. Maintainance and supports are limited.
Uber Research
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022