Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Overview

Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting (official Pytorch implementation)

zero-shot This paper submitted to TIP is the extension of the previous Arxiv paper.

This project aims to

  1. provide a baseline of pedestrian attribute recognition.
  2. provide two new datasets RAPzs and PETAzs following zero-shot pedestrian identity setting.
  3. provide a general training pipeline for pedestrian attribute recognition and multi-label classification task.

This project provide

  1. DDP training, which is mainly used for multi-label classifition.
  2. Training on all attributes, testing on "selected" attribute. Because the proportion of positive samples for other attributes is less than a threshold, such as 0.01.
    1. For PETA and PETAzs, 35 of the 105 attributes are selected for performance evaluation.
    2. For RAPv1, 51 of the 92 attributes are selected for performance evaluation.
    3. For RAPv2 and RAPzs, 54 and 53 of the 152 attributes are selected for performance evaluation.
    4. For PA100k, all attributes are selected for performance evaluation.
    • However, training on all attributes can not bring consistent performance improvement on various datasets.
  3. EMA model.
  4. Transformer-base model, such as swin-transformer (with a huge performance improvement) and vit.
  5. Convenient dataset info file like dataset_all.pkl

Dataset Info

  • PETA: Pedestrian Attribute Recognition At Far Distance [Paper][Project]

  • PA100K[Paper][Github]

  • RAP : A Richly Annotated Dataset for Pedestrian Attribute Recognition

  • PETAzs & RAPzs : Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting Paper [Project]

Performance

Pedestrian Attribute Recognition

Datasets Models ma Acc Prec Rec F1
PA100k resnet50 80.21 79.15 87.79 87.01 87.40
-- resnet50* 79.85 79.13 89.45 85.40 87.38
-- resnet50 + EMA 81.97 80.20 88.06 88.17 88.11
-- bninception 79.13 78.19 87.42 86.21 86.81
-- TresnetM 74.46 68.72 79.82 80.71 80.26
-- swin_s 82.19 80.35 87.85 88.51 88.18
-- vit_s 79.40 77.61 86.41 86.22 86.32
-- vit_b 81.01 79.38 87.60 87.49 87.55
PETA resnet50 83.96 78.65 87.08 85.62 86.35
PETAzs resnet50 71.43 58.69 74.41 69.82 72.04
RAPv1 resnet50 79.27 67.98 80.19 79.71 79.95
RAPv2 resnet50 78.52 66.09 77.20 80.23 78.68
RAPzs resnet50 71.76 64.83 78.75 76.60 77.66
  • The resnet* model is trained by using the weighted function proposed by Tan in AAAI2020.
  • Performance in PETAzs and RAPzs based on the first version of PETAzs and RAPzs as described in paper.
  • Experiments are conducted on the input size of (256, 192), so there may be minor differences from the results in the paper.
  • The reported performance can be achieved at the first drop of learning rate. We also take this model as the best model.
  • Pretrained models are provided now at Google Drive.

Multi-label Classification

Datasets Models mAP CP CR CF1 OP OR OF1
COCO resnet101 82.75 84.17 72.07 77.65 85.16 75.47 80.02

Pretrained Models

Dependencies

  • python 3.7
  • pytorch 1.7.0
  • torchvision 0.8.2
  • cuda 10.1

Get Started

  1. Run git clone https://github.com/valencebond/Rethinking_of_PAR.git
  2. Create a directory to dowload above datasets.
    cd Rethinking_of_PAR
    mkdir data
    
  3. Prepare datasets to have following structure:
    ${project_dir}/data
        PETA
            images/
            PETA.mat
            dataset_all.pkl
            dataset_zs_run0.pkl
        PA100k
            data/
            dataset_all.pkl
        RAP
            RAP_dataset/
            RAP_annotation/
            dataset_all.pkl
        RAP2
            RAP_dataset/
            RAP_annotation/
            dataset_zs_run0.pkl
        COCO14
            train2014/
            val2014/
            ml_anno/
                category.json
                coco14_train_anno.pkl
                coco14_val_anno.pkl
    
  4. Train baseline based on resnet50
    sh train.sh
    

Acknowledgements

Codes are based on the repository from Dangwei Li and Houjing Huang. Thanks for their released code.

Citation

If you use this method or this code in your research, please cite as:

@article{jia2021rethinking,
  title={Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting},
  author={Jia, Jian and Huang, Houjing and Chen, Xiaotang and Huang, Kaiqi},
  journal={arXiv preprint arXiv:2107.03576},
  year={2021}
}
Owner
Jian
computer vision
Jian
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022