Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

Overview

DHF1K

===========================================================================

Wenguan Wang, J. Shen, M.-M Cheng and A. Borji,

Revisiting Video Saliency: A Large-scale Benchmark and a New Model,

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 and

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2019

===========================================================================

The code (ACLNet) and dataset (DHF1K with raw gaze records, UCF-sports are new added!) can be downloaded from:

Google disk:https://drive.google.com/open?id=1sW0tf9RQMO4RR7SyKhU8Kmbm4jwkFGpQ

Baidu pan: https://pan.baidu.com/s/110NIlwRIiEOTyqRwYdDnVg

The Hollywood-2 (74.6G, including attention maps) can be downloaded from:

Google disk:https://drive.google.com/file/d/1vfRKJloNSIczYEOVjB4zMK8r0k4VJuWk/view?usp=sharing

Baidu pan: link:https://pan.baidu.com/s/16BIAuaGEDDbbjylJ8zziuA code:bt3x

Since so many people are interested in the training code, I decide to upload it in above webdisks. Enjoy it.

===========================================================================

Files:

'video': 1000 videos (videoname.AVI)

'annotation/videoname/maps': continuous saliency maps in '.png' format

'annotation/videoname/fixation': binary eye fixation maps in '.png' format

'annotation/videoname/maps': binary eye fixation maps stored in mat file

'generate_frame.m': used for extracting the frame images from AVI videos.

Please note raw data of individual viewers are stored in 'exportdata_train.rar'.

Note that please do not change the way of naming frames.

===========================================================================

Dataset splitting:

Training set: first 600 videos (001.AVI-600.AVI)

Validation set: 100 videos (601.AVI-700.AVI)

Testing set: 300 videos (701.AVI-1000.AVI)

The annotations for the training and val sets are released, but the

annotations of the testing set are held-out for benchmarking.

===========================================================================

We have corrected some statistics of our results (baseline training setting (iii)) on UCF sports dataset. Please see our newest version in ArXiv.

===========================================================================

Note that, for Holly-wood2 dataset, we used the split videos (each video only contains one shot), instead of the full videos.

===========================================================================

The raw data of gaze record "exportdata_train.rar" has been uploaded.

===========================================================================

For DHF1K dataset, we use following functions to generate continous saliency map:

[x,y]=find(fixations);

densityMap= make_gauss_masks(y,x,[video_res_y,video_res_x]);

make_gauss_masks.m has been uploaded.

For UCF and Hollywood, I directly use following functions:

densityMap = imfilter(fixations,fspecial('gaussian',150,20),'replicate');

===========================================================================

Results submission.

Please orgnize your results in following format:

yourmethod/videoname/framename.png

Note that the frames and framenames should be generated by 'generate_frame.m'.

Then send your results to '[email protected]'.

You can only sumbmit ONCE within One week.

Please first test your model on the val set or other video saliency dataset.

The response may be more than one week.

If you want to list your results on our web, please send your name, model

name, paper title, short description of your method and the link of the web

of your project (if you have).

===========================================================================

We use

Keras: 2.2.2

tensorflow: 1.10.0

to implement our model.

===========================================================================

Citation:

@InProceedings{Wang_2018_CVPR,
author = {Wang, Wenguan and Shen, Jianbing and Guo, Fang and Cheng, Ming-Ming and Borji, Ali},
title = {Revisiting Video Saliency: A Large-Scale Benchmark and a New Model},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition},
year = {2018}
}

@ARTICLE{Wang_2019_revisitingVS, 
author={W. {Wang} and J. {Shen} and J. {Xie} and M. {Cheng} and H. {Ling} and A. {Borji}}, 
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
title={Revisiting Video Saliency Prediction in the Deep Learning Era}, 
year={2019}, 
}

If you find our dataset is useful, please cite above papers.

===========================================================================

Code (ACLNet):

You can find the code in google disk: https://drive.google.com/open?id=1sW0tf9RQMO4RR7SyKhU8Kmbm4jwkFGpQ

===========================================================================

Terms of use:

The dataset and code are licensed under a Creative Commons Attribution 4.0 License.

===========================================================================

Contact Information Email: [email protected]


Owner
Wenguan Wang
Postdoctoral Scholar
Wenguan Wang
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022