Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Overview

Density-aware Chamfer Distance

This repository contains the official PyTorch implementation of our paper:

Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion, NeurIPS 2021

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, Dahua Lin

avatar

We present a new point cloud similarity measure named Density-aware Chamfer Distance (DCD). It is derived from CD and benefits from several desirable properties: 1) it can detect disparity of density distributions and is thus a more intensive measure of similarity compared to CD; 2) it is stricter with detailed structures and significantly more computationally efficient than EMD; 3) the bounded value range encourages a more stable and reasonable evaluation over the whole test set. DCD can be used as both an evaluation metric and the training loss. We mainly validate its performance on point cloud completion in our paper.

This repository includes:

  • Implementation of Density-aware Chamfer Distance (DCD).
  • Implementation of our method for this task and the pre-trained model.

Installation

Requirements

  • PyTorch 1.2.0
  • Open3D 0.9.0
  • Other dependencies are listed in requirements.txt.

Install

Install PyTorch 1.2.0 first, and then get the other requirements by running the following command:

bash setup.sh

Dataset

We use the MVP Dataset. Please download the train set and test set and then modify the data path in data/mvp_new.py to the your own data location. Please refer to their codebase for further instructions.

Usage

Density-aware Chamfer Distance

The function for DCD calculation is defined in def calc_dcd() in utils/model_utils.py.

Users of higher PyTorch versions may try def calc_dcd() in utils_v2/model_utils.py, which has been tested on PyTorch 1.6.0 .

Model training and evaluation

  • To train a model: run python train.py ./cfgs/*.yaml, for example:
python train.py ./cfgs/vrc_plus.yaml
  • To test a model: run python train.py ./cfgs/*.yaml --test_only, for example:
python train.py ./cfgs/vrc_plus_eval.yaml --test_only
  • Config for each algorithm can be found in cfgs/.
  • run_train.sh and run_test.sh are provided for SLURM users.

We provide the following config files:

  • pcn.yaml: PCN trained with CD loss.
  • vrc.yaml: VRCNet trained with CD loss.
  • pcn_dcd.yaml: PCN trained with DCD loss.
  • vrc_dcd.yaml: VRCNet trained with DCD loss.
  • vrc_plus.yaml: training with our method.
  • vrc_plus_eval.yaml: evaluation of our method with guided down-sampling.

Attention: We empirically find that using DP or DDP for training would slightly hurt the performance. So training on multiple cards is not well supported currently.

Pre-trained models

We provide the pre-trained model that reproduce the results in our paper. Download and extract it to the ./log/pretrained/ directory, and then evaluate it with cfgs/vrc_plus_eval.yaml. The setting prob_sample: True turns on the guided down-sampling. We also provide the model for VRCNet trained with DCD loss here.

Citation

If you find our code or paper useful, please cite our paper:

@inproceedings{wu2021densityaware,
  title={Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion},
  author={Tong Wu, Liang Pan, Junzhe Zhang, Tai WANG, Ziwei Liu, Dahua Lin},
  booktitle={In Advances in Neural Information Processing Systems (NeurIPS), 2021},
  year={2021}
}

Acknowledgement

The code is based on the VRCNet implementation. We include the following PyTorch 3rd-party libraries: ChamferDistancePytorch, emd, expansion_penalty, MDS, and Pointnet2.PyTorch. Thanks for these great projects.

Contact

Please contact @wutong16 for questions, comments and reporting bugs.

Owner
Tong WU
Tong WU
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022