A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Related tags

Deep LearningOrchard
Overview

Orchard Dataset

This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: State-of-the-Art Neural Sequence Models Fail To Generalize paper. The coode to train and test Transformers and Bi-directional LSTM models was adapted from
Fairseq.

Software Requirements

Python 3.6, PyTorch 1.4 are required for the current codebase. Install apex to enable fp16 training.

Steps

  1. Install PyTorch and apex by running pip install -r requirements.txt

  2. Generate Orchard

  • Generate Orchard-easy Dataset with MIN-MAX operators. python generate_tree.py --c 0 --mm --size 50 --dir /path_to_data/

    • Generate Orchard-hard Dataset with FIRST-LAST operators. python generate_tree.py --c 1.0 --fl --size 50 --dir /path_to_data/
  1. Pre-process Dataset

    • Pre-process Dataset to generate translation dictionaries python preprocess.py --trainpref /path_to_data/train --validpref /path_to_data/valid --source-lang input --target-lang label --task translation --testpref /path_to_data --destdir /path_to_data
  2. Train model

    • Train Transformer python train.py /path_to_data/ --save-dir /path_to_data/ --task translation --source-lang input --target-lang label --batch-size 128 --arch transformer --optimizer adam --lr 5e-4 --lr-scheduler inverse_sqrt --fp16 --adam-betas '(0.9, 0.98)' --weight-decay 1.2e-6 --clip-norm 1. --dropout 0.3 --save-interval 50 --max-epoch 500

    • Train LSTM python train.py data-orchard-mmc --save-dir data-orchard-mmc --task translation --arch lstm --source-lang input --target-lang label --batch-size 128 --save-interval 100 --max-epoch 500 --lr 5e-3 --fp16

  3. Generate predictions

    • Test model on depth of tree 7 python generate.py /path_to_data/test7 --path /path_to_data/checkpoint500.pt --batch-size 32 --beam 5
Owner
Bill Pung
Data Scientist working on Artificial Intelligence. Happy to connect on LinkedIn: https://www.linkedin.com/in/billptw/
Bill Pung
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Woosung Choi 63 Nov 14, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022