Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Overview

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations

This repo contains the Pytorch implementation of our paper:

Revisiting Contrastive Methods for UnsupervisedLearning of Visual Representations

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis and Luc Van Gool.

Contents

  1. Introduction
  2. Key Results
  3. Installation
  4. Training
  5. Evaluation
  6. Model Zoo
  7. Citation

Introduction

Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection. However, current methods are still primarily applied to curated datasets like ImageNet. We first study how biases in the dataset affect existing methods. Our results show that an approach like MoCo works surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets. Second, given the generality of the approach, we try to realize further gains. We show that learning additional invariances - through the use of multi-scale cropping, stronger augmentations and nearest neighbors - improves the representations. Finally, we observe that MoCo learns spatially structured representations when trained with a multi-crop strategy. The representations can be used for semantic segment retrieval and video instance segmentation without finetuning. Moreover, the results are on par with specialized models. We hope this work will serve as a useful study for other researchers.

Key Results

  • Scene-centric Data: We do not observe any indications that contrastive pretraining suffers from using scene-centric image data. This is in contrast to prior belief. Moreover, if the downstream data is non-object-centric, pretraining on scene-centric datasets even outperforms ImageNet pretraining.
  • Dense Representations: The multi-scale cropping strategy allows the model to learn spatially structured representations. This questions a recent trend that proposed additional losses at a denser level in the image. The representations can be used for semantic segment retrieval and video instance segmentation without any finetuning.
  • Additional Invariances: We impose additional invariances by exploring different data augmentations and nearest neighbors to boost the performance.
  • Transfer Performance: We observed that if a model obtains improvements for the downstream classification tasks, the same improvements are not guarenteed for other tasks (e.g. semantic segmentation) and vice versa.

Installation

The Python code runs with recent Pytorch versions, e.g. 1.6. Assuming Anaconda, the most important packages can be installed as:

conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.2 -c pytorch
conda install -c conda-forge opencv           # For evaluation
conda install matplotlib scipy scikit-learn   # For evaluation

We refer to the environment.yml file for an overview of the packages we used to reproduce our results. The code was run on 2 Tesla V100 GPUs.

Training

Now, we will pretrain on the COCO dataset. You can download the dataset from the official website. Several scripts in the scripts/ directory are provided. It contains the vanilla MoCo setup and our additional modifications for both 200 epochs and 800 epochs of training. First, modify --output_dir and the dataset location in each script before executing them. Then, run the following command to start the training for 200 epochs:

sh scripts/ours_coco_200ep.sh # Train our model for 200 epochs.

The training currently supports:

  • MoCo
  • + Multi-scale constrained cropping
  • + AutoAugment
  • + kNN-loss

A detailed version of the pseudocode can be found in Appendix B.

Evaluation

We perform the evaluation for the following downstream tasks: linear classification (VOC), semantic segmentation (VOC and Cityscapes), semantic segment retrieval and video instance segmentation (DAVIS). More details and results can be found in the main paper and the appendix.

Linear Classifier

The representations can be evaluated under the linear evaluation protocol on PASCAL VOC. Please visit the ./evaluation/voc_svm directory for more information.

Semantic Segmentation

We provide code to evaluate the representations for the semantic segmentation task on the PASCAL VOC and Cityscapes datasets. Please visit the ./evaluation/segmentation directory for more information.

Segment Retrieval

In order to obtain the results from the paper, run the publicly available code with our weights as the initialization of the model. You only need to adapt the amount of clusters, e.g. 5.

Video Instance Segmentation

In order to obtain the results from the paper, run the publicly available code from Jabri et al. with our weights as the initialization of the model.

Model Zoo

Several pretrained models can be downloaded here. For a fair comparison, which takes the training duration into account, we refer to Figure 5 in the paper. More results can be found in Table 4 and Table 9.

Method Epochs VOC SVM VOC mIoU Cityscapes mIoU DAVIS J&F Download link
MoCo 200 76.1 66.2 70.3 - Model 🔗
Ours 200 85.1 71.9 72.2 - Model 🔗
MoCo 800 81.0 71.1 71.3 63.2 Model 🔗
Ours 800 85.9 73.5 72.3 66.2 Model 🔗

Citation

This code is based on the MoCo repository. If you find this repository useful for your research, please consider citing the following paper(s):

@article{vangansbeke2021revisiting,
  title={Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations},
  author={Van Gansbeke, Wouter and Vandenhende, Simon and Georgoulis, Stamatios and Van Gool, Luc},
  journal={arxiv preprint arxiv:2106.05967},
  year={2021}
}
@inproceedings{he2019moco,
  title={Momentum Contrast for Unsupervised Visual Representation Learning},
  author={Kaiming He and Haoqi Fan and Yuxin Wu and Saining Xie and Ross Girshick},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

For any enquiries, please contact the main authors.

Extra

  • For an overview on self-supervised learning (SSL), have a look at the overview repository.
  • Interested in self-supervised semantic segmentation? Check out our recent work: MaskContrast.
  • Interested in self-supervised classification? Check out SCAN.
  • Other great SSL repositories: MoCo, SupContrast, SeLa, SwAV and many more here.

License

This software is released under a creative commons license which allows for personal and research use only. You can view a license summary here. Part of the code was based on MoCo. Check it out for more details.

Acknoledgements

This work was supported by Toyota, and was carried out at the TRACE Lab at KU Leuven (Toyota Research on Automated Cars in Europe - Leuven).

Owner
Wouter Van Gansbeke
PhD researcher at KU Leuven. Especially interested in computer vision, machine learning and deep learning. Working on self-supervised and multi-task learning.
Wouter Van Gansbeke
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023