Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Overview

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations

This repo contains the Pytorch implementation of our paper:

Revisiting Contrastive Methods for UnsupervisedLearning of Visual Representations

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis and Luc Van Gool.

Contents

  1. Introduction
  2. Key Results
  3. Installation
  4. Training
  5. Evaluation
  6. Model Zoo
  7. Citation

Introduction

Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection. However, current methods are still primarily applied to curated datasets like ImageNet. We first study how biases in the dataset affect existing methods. Our results show that an approach like MoCo works surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets. Second, given the generality of the approach, we try to realize further gains. We show that learning additional invariances - through the use of multi-scale cropping, stronger augmentations and nearest neighbors - improves the representations. Finally, we observe that MoCo learns spatially structured representations when trained with a multi-crop strategy. The representations can be used for semantic segment retrieval and video instance segmentation without finetuning. Moreover, the results are on par with specialized models. We hope this work will serve as a useful study for other researchers.

Key Results

  • Scene-centric Data: We do not observe any indications that contrastive pretraining suffers from using scene-centric image data. This is in contrast to prior belief. Moreover, if the downstream data is non-object-centric, pretraining on scene-centric datasets even outperforms ImageNet pretraining.
  • Dense Representations: The multi-scale cropping strategy allows the model to learn spatially structured representations. This questions a recent trend that proposed additional losses at a denser level in the image. The representations can be used for semantic segment retrieval and video instance segmentation without any finetuning.
  • Additional Invariances: We impose additional invariances by exploring different data augmentations and nearest neighbors to boost the performance.
  • Transfer Performance: We observed that if a model obtains improvements for the downstream classification tasks, the same improvements are not guarenteed for other tasks (e.g. semantic segmentation) and vice versa.

Installation

The Python code runs with recent Pytorch versions, e.g. 1.6. Assuming Anaconda, the most important packages can be installed as:

conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.2 -c pytorch
conda install -c conda-forge opencv           # For evaluation
conda install matplotlib scipy scikit-learn   # For evaluation

We refer to the environment.yml file for an overview of the packages we used to reproduce our results. The code was run on 2 Tesla V100 GPUs.

Training

Now, we will pretrain on the COCO dataset. You can download the dataset from the official website. Several scripts in the scripts/ directory are provided. It contains the vanilla MoCo setup and our additional modifications for both 200 epochs and 800 epochs of training. First, modify --output_dir and the dataset location in each script before executing them. Then, run the following command to start the training for 200 epochs:

sh scripts/ours_coco_200ep.sh # Train our model for 200 epochs.

The training currently supports:

  • MoCo
  • + Multi-scale constrained cropping
  • + AutoAugment
  • + kNN-loss

A detailed version of the pseudocode can be found in Appendix B.

Evaluation

We perform the evaluation for the following downstream tasks: linear classification (VOC), semantic segmentation (VOC and Cityscapes), semantic segment retrieval and video instance segmentation (DAVIS). More details and results can be found in the main paper and the appendix.

Linear Classifier

The representations can be evaluated under the linear evaluation protocol on PASCAL VOC. Please visit the ./evaluation/voc_svm directory for more information.

Semantic Segmentation

We provide code to evaluate the representations for the semantic segmentation task on the PASCAL VOC and Cityscapes datasets. Please visit the ./evaluation/segmentation directory for more information.

Segment Retrieval

In order to obtain the results from the paper, run the publicly available code with our weights as the initialization of the model. You only need to adapt the amount of clusters, e.g. 5.

Video Instance Segmentation

In order to obtain the results from the paper, run the publicly available code from Jabri et al. with our weights as the initialization of the model.

Model Zoo

Several pretrained models can be downloaded here. For a fair comparison, which takes the training duration into account, we refer to Figure 5 in the paper. More results can be found in Table 4 and Table 9.

Method Epochs VOC SVM VOC mIoU Cityscapes mIoU DAVIS J&F Download link
MoCo 200 76.1 66.2 70.3 - Model 🔗
Ours 200 85.1 71.9 72.2 - Model 🔗
MoCo 800 81.0 71.1 71.3 63.2 Model 🔗
Ours 800 85.9 73.5 72.3 66.2 Model 🔗

Citation

This code is based on the MoCo repository. If you find this repository useful for your research, please consider citing the following paper(s):

@article{vangansbeke2021revisiting,
  title={Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations},
  author={Van Gansbeke, Wouter and Vandenhende, Simon and Georgoulis, Stamatios and Van Gool, Luc},
  journal={arxiv preprint arxiv:2106.05967},
  year={2021}
}
@inproceedings{he2019moco,
  title={Momentum Contrast for Unsupervised Visual Representation Learning},
  author={Kaiming He and Haoqi Fan and Yuxin Wu and Saining Xie and Ross Girshick},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

For any enquiries, please contact the main authors.

Extra

  • For an overview on self-supervised learning (SSL), have a look at the overview repository.
  • Interested in self-supervised semantic segmentation? Check out our recent work: MaskContrast.
  • Interested in self-supervised classification? Check out SCAN.
  • Other great SSL repositories: MoCo, SupContrast, SeLa, SwAV and many more here.

License

This software is released under a creative commons license which allows for personal and research use only. You can view a license summary here. Part of the code was based on MoCo. Check it out for more details.

Acknoledgements

This work was supported by Toyota, and was carried out at the TRACE Lab at KU Leuven (Toyota Research on Automated Cars in Europe - Leuven).

Owner
Wouter Van Gansbeke
PhD researcher at KU Leuven. Especially interested in computer vision, machine learning and deep learning. Working on self-supervised and multi-task learning.
Wouter Van Gansbeke
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023