We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

Related tags

Deep LearningConTNet
Overview

ConTNet

Introduction

ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large receptive field, limiting the performance of ConvNets on downstream tasks. (2) Transformer-based model is not robust enough and requires special training settings or hundreds of millions of images as the pretrain dataset, thereby limiting their adoption. ConTNet combines convolution and transformer alternately, which is very robust and can be optimized like ResNet unlike the recently-proposed transformer-based models (e.g., ViT, DeiT) that are sensitive to hyper-parameters and need many tricks when trained from scratch on a midsize dataset (e.g., ImageNet).

Main Results on ImageNet

name resolution [email protected] #params(M) FLOPs(G) model
Res-18 224x224 71.5 11.7 1.8
ConT-S 224x224 74.9 10.1 1.5
Res-50 224x224 77.1 25.6 4.0
ConT-M 224x224 77.6 19.2 3.1
Res-101 224x224 78.2 44.5 7.6
ConT-B 224x224 77.9 39.6 6.4
DeiT-Ti* 224x224 72.2 5.7 1.3
ConT-Ti* 224x224 74.9 5.8 0.8
Res-18* 224x224 73.2 11.7 1.8
ConT-S* 224x224 76.5 10.1 1.5
Res-50* 224x224 78.6 25.6 4.0
DeiT-S* 224x224 79.8 22.1 4.6
ConT-M* 224x224 80.2 19.2 3.1
Res-101* 224x224 80.0 44.5 7.6
DeiT-B* 224x224 81.8 86.6 17.6
ConT-B* 224x224 81.8 39.6 6.4

Note: * indicates training with strong augmentations.

Main Results on Downstream Tasks

Object detection results on COCO.

method backbone #params(M) FLOPs(G) AP APs APm APl
RetinaNet Res-50
ConTNet-M
32.0
27.0
235.6
217.2
36.5
37.9
20.4
23.0
40.3
40.6
48.1
50.4
FCOS Res-50
ConTNet-M
32.2
27.2
242.9
228.4
38.7
40.8
22.9
25.1
42.5
44.6
50.1
53.0
faster rcnn Res-50
ConTNet-M
41.5
36.6
241.0
225.6
37.4
40.0
21.2
25.4
41.0
43.0
48.1
52.0

Instance segmentation results on Cityscapes based on Mask-RCNN.

backbone APbb APsbb APmbb APlbb APmk APsmk APmmk APlmk
Res-50
ConT-M
38.2
40.5
21.9
25.1
40.9
44.4
49.5
52.7
34.7
38.1
18.3
20.9
37.4
41.0
47.2
50.3

Semantic segmentation results on cityscapes.

model mIOU
PSP-Res50 77.12
PSP-ConTM 78.28

Bib Citing

@article{yan2021contnet,
    title={ConTNet: Why not use convolution and transformer at the same time?},
    author={Haotian Yan and Zhe Li and Weijian Li and Changhu Wang and Ming Wu and Chuang Zhang},
    year={2021},
    journal={arXiv preprint arXiv:2104.13497}
}
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rรผckert 1.9k Jan 06, 2023
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
๐Ÿฅ‡ LG-AI-Challenge 2022 1์œ„ ์†”๋ฃจ์…˜ ์ž…๋‹ˆ๋‹ค.

LG-AI-Challenge-for-Plant-Classification Dacon์—์„œ ์ง„ํ–‰๋œ ๋†์—… ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ž‘๋ฌผ ๋ณ‘ํ•ด ์ง„๋‹จ AI ๊ฒฝ์ง„๋Œ€ํšŒ ์— ๋Œ€ํ•œ ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค. (colab directory์— ์ฝ”๋“œ๊ฐ€ ์ž˜ ์ •๋ฆฌ ๋˜์–ด์žˆ์Šต๋‹ˆ๋‹ค.) Requirements python

siwooyong 10 Jun 30, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023